Installation Instructions

48HC units for installation in the United States contain use of Carrier’s Staged Air Volume (SAV™) 2-speed indoor fan control system. This complies with the U.S. Department of Energy (DOE) efficiency standard of 2018.

48HC units for installation outside the United States may or may not contain use of the SAV 2-speed indoor fan control system as they are not required to comply with the U.S. Department of Energy (DOE) efficiency standard of 2018.

For specific details on operation of the Carrier SAV 2-speed indoor fan system refer to the Variable Frequency Drive (VFD) Factory-Installed Option 2-Speed Motor Control Installation, Setup, and Troubleshooting manual.

SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock or other conditions which may cause personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloths for brazing operations and have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and appropriate national electrical codes (in USA, ANSI/NFPA 70, National Electrical Code (NEC); in Canada, CSA C22.1) for special requirements.

It is important to recognize safety information. This is the safety-alert symbol △. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices, which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect gas piping from unit when leak testing at pressure greater than 0.5 psig (3450 Pa). Pressures greater than 0.5 psig (3450 Pa) will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig (3450 Pa), it must be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig (3450 Pa) or less, a unit connected to such piping must be isolated by closing the manual gas valve.
Rated Indoor Airflow (cfm)

The table below lists the rated indoor airflow used for the AHRI efficiency rating for the units covered in this document.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Full Load Airflow (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48HC*A/B/F07</td>
<td>2400</td>
</tr>
<tr>
<td>48HC*D/E/G07</td>
<td>2400</td>
</tr>
<tr>
<td>48HC*D/E/G08</td>
<td>3000</td>
</tr>
<tr>
<td>48HC*D/E/G09</td>
<td>3000</td>
</tr>
<tr>
<td>48HC*D/E/11</td>
<td>3000</td>
</tr>
<tr>
<td>48HC*D/E/G12</td>
<td>3000</td>
</tr>
</tbody>
</table>

Pre-Installation

Complete the following checks before installation.

1. Consult local building codes and the NEC (National Electrical Code) ANSI/NFPA 70 for special installation requirements.
2. Determine unit location (from project plans) or select unit location.
 - Check for possible overhead obstructions which may interfere with unit lifting or rigging.
Fig. 1 — 48HC 07-12 Model Number Nomenclature (Example)

Unit Heat Type
- 48 - Gas Heat Packaged Rooftop

Model Series - WeatherMaster®
- HC - High Efficiency

Heat Options
- D = Low Gas Heat
- E = Medium Gas Heat
- F = High Gas Heat
- S = Low Heat w/ Stainless Steel Exchanger
- R = Medium Heat w/ Stainless Steel Exchanger
- T = High Heat w/ Stainless Steel Exchanger
- (Low Nox models include – Stainless Steel HX)

Refrig. Systems Options
- A = Single stage cooling models
- B = Single stage cooling models with Humidi-Mizer®
- D = Two stage cooling models
- E = Two stage cooling models with Humidi-Mizer
- F = Single stage cooling models with MotorMaster Low Ambient Controller
- G = Two stage cooling models with MotorMaster Low Ambient Controller
- A = Single stage cooling models
- B = Single stage cooling models with Humidi-Mizer®
- D = Two stage cooling models
- E = Two stage cooling models with Humidi-Mizer
- F = Single stage cooling models with MotorMaster Low Ambient Controller
- G = Two stage cooling models with MotorMaster Low Ambient Controller

Cooling Tons
- 07 - 6 ton
- 08 - 7.5 ton
- 09 - 8.5 ton
- 11 - 10 ton (12.0 EER)
- 12 - 10 ton (11.5 EER)

Sensor Options
- A = None
- B = RA Smoke Detector
- C = SA Smoke Detector
- D = RA + SA Smoke Detector
- E = CO₂
- F = RA Smoke Detector and CO₂
- G = SA Smoke Detector and CO₂
- H = RA + SA Smoke Detector and CO₂

Indoor Fan Options
- 1 = Standard Static Option - Belt Drive
- 2 = Medium Static Option - Belt Drive
- 3 = High Static Option - Belt Drive

Coil Options (RTPF) (Outdoor - Indoor - Hail Guard)
- A = Al/Cu - Al/Cu
- B = Precast Al/Cu - Al/Cu
- C = E-coat Al/Cu - Al/Cu
- D = E-coat Al/Cu - E-coat Al/Cu
- E = Cu/Cu - Al/Cu
- F = Cu/Cu - Cu/Cu
- M = Al/Cu - Al/Cu — Louvered Hall Guard
- N = Precast Al/Cu - Al/Cu — Louvered Hall Guard
- P = E-coat Al/Cu - Al/Cu — Louvered Hall Guard
- Q = E-coat Al/Cu - E-coat Al/Cu — Louvered Hall Guard
- R = Cu/Cu - Al/Cu — Louvered Hall Guard
- S = Cu/Cu - Cu/Cu — Louvered Hall Guard

Voltage
- 1 = 575/3/60
- 5 = 208-230/3/60
- 6 = 460/3/60

Factory Assigned
- 0 = Standard
- 1 = LTL

Electrical Options
- A = None
- B = HACR Breaker
- C = Non-Fused Disconnect
- D = Thru-The-Base Connections
- E = HACR and Thru-The Base Connections
- F = Non-Fused Disconnect and Thru-The-Base Connections
- G = 2-Speed Indoor Fan (VFD) Controller
- H = 2-Speed Fan Controller (VFD) and HACR Breaker
- J = 2-Speed Fan Controller (VFD) and Non-Fused Disconnect
- K = 2-Speed Fan Controller (VFD) and Thru-The-Base Connections
- L = 2-Speed Fan Controller (VFD) w/ HACR Breaker and Thru-The Base Connections
- M = 2-Speed Fan Controller (VFD) with Non-Fused Disconnect and Thru-The-Base Connections

Service Options
- 0 = None
- 1 = Unpowered Convenience Outlet
- 2 = Powered Convenience Outlet
- 3 = Hinged Panels
- 4 = Hinged Panels and Unpowered Convenience Outlet
- 5 = Hinged Panels and Powered Convenience Outlet
- C = Foil Faced Insulation
- D = Foil Faced Insulation with Unpowered Convenience Outlet
- E = Foil Faced Insulation with Powered Convenience Outlet
- F = Foil Faced Insulation & Hinged Panels
- G = Foil Faced Insulation & Hinged Panels with Unpowered Convenience Outlet
- H = Foil Faced Insulation & Hinged Panels with Powered Convenience Outlet

Intake / Exhaust Options
- A = None
- B = Temperature Economizer w/ Barometric Relief
- F = Enthalpy Economizer w/ Barometric Relief
- K = 2-Position Damper
- U = Low Leak Temperature Economizer w/ Barometric Relief
- W = Low Leak Enthalpy Economizer w/ Barometric Relief

Base Unit Controls
- 0 = Electromechanical Controls can be used with W7212 EconoMiser® (Non-Fault Detection and Diagnostic)
- 1 = PremiertLink™ Controller
- 2 = RTU Open Multi-Protocol Controller
- 6 = Electro-mechanical w/ 2-speed fan and W7220 Econo controller controls. Can be used with W7220 EconoMiser X (w/ Fault Detection & Diagnostic)
- D = ComfortLink Controls

Design Revision
- A = Factory Design Revision
Fig. 3 — Unit Dimensional Drawing — Sizes 11 and 12 (cont)
INSTALLATION

Jobsite Survey — Complete the following checks before installation.
1. Consult local building codes and the NEC (National Electrical Code) ANSI/NFPA 70 for special installation requirements.
2. Determine unit location (from project plans) or select unit location.
3. Check for possible overhead obstructions which may interfere with unit lifting or rigging.

Step 1 — Plan for Unit Location — Select a location for the unit and its support system (curb or other) that provides for the minimum clearances required for safety. This includes the clearance to combustible surfaces, unit performance and service access below, around and above unit as specified in unit drawings. See Fig. 4.

NOTE: Consider also the effect of adjacent units.

Be sure that the unit is installed such that snow will not block the combustion intake or flue outlet.

Unit may be installed directly on wood flooring or on Class A, B, or C roof-covering material when roof curb is used.

Do not install unit in an indoor location. Do not locate air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute) and NFPA (National Fire Protection Association) 54 TIA-54-84-1. In Canada, installation must be in accordance with the CAN1-B149 installation codes for gas burning appliances.

Although unit is weatherproof, avoid locations that permit water from higher level runoff and overhangs to fall onto the unit.

Fig. 4 — Service Clearance Dimensional Drawing — Sizes 07-12

LOCATION	DIMENSION	CONDITION
A | 48-in. (1219 mm) 18-in. (457 mm) 12-in. (305 mm) | Unit disconnect is mounted on panel No disconnect, convenience outlet option Recommended service clearance Minimum clearance
B | 42-in. (1067 mm) 36-in. (914 mm) Special | Surface behind servicer is grounded (e.g., metal, masonry wall) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass) Check sources of flue products within 10-ft of unit fresh air intake hood
C | 36-in. (914 mm) 18-in. (457 mm) | Side condensate drain is used Minimum clearance
D | 48-in. (1219 mm) 42-in. (1067 mm) 36-in. (914 mm) Special | No flue discharge accessory installed, surface is combustible material Surface behind servicer is grounded (e.g., metal, masonry wall, another unit) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass) Check for adjacent units or building fresh air intakes within 10-ft (3 m) of this unit’s flue outlet

NOTE: Unit not designed to have overhead obstruction. Contact Application Engineering for guidance on any application planning overhead obstruction or for vertical clearances.
Locate mechanical draft system flue assembly at least 4 ft (1.2 m) from any opening through which combustion products could enter the building, and at least 4 ft (1.2 m) from any adjacent building (or per local code). Locate the flue assembly at least 10 ft (3.05 m) from an adjacent unit’s fresh air intake hood if within 3 ft (0.91 m) of same elevation (or per local code). When unit is located adjacent to public walkways, flue assembly must be at least 7 ft (2.1 m) above grade.

Select a unit mounting system that provides adequate height to allow installation of condensate trap per requirements. Refer to Step 10 — Install External Condensate Trap and Line for required trap dimensions.

ROOF MOUNT — Check building codes for weight distribution requirements. Unit operating weight is shown in Table 2.

Step 2 — Plan for Sequence of Unit Installation — The support method used for this unit will dictate different sequences for the steps of unit installation. For example, on curb-mounted units, some accessories must be installed on the unit before the unit is placed on the curb. Review the following for recommended sequences for installation steps.

CURB-MOUNTED INSTALLATION

- Install curb
- Install field-fabricated ductwork inside curb
- Install accessory thru-base service connection package (affects curb and unit) (refer to accessory installation instructions for details)
- Prepare bottom condensate drain connection to suit planned condensate line routing (refer to Step 10 for details)
- Rig and place unit
- Install outdoor air hood
- Install flue hood
- Install gas piping
- Install condensate line trap and piping
- Make electrical connections
- Install other accessories

PAD-MOUNTED INSTALLATION

- Prepare pad and unit supports
- Check and tighten the bottom condensate drain connection plug
- Rig and place unit
- Convert unit to side duct connection arrangement
- Install field-fabricated ductwork at unit duct openings
- Install outdoor air hood
- Install flue hood
- Install gas piping
- Install condensate line trap and piping
- Make electrical connections
- Install other accessories

FRAME-MOUNTED INSTALLATION — Frame-mounted applications generally follow the sequence for a curb installation. Adapt as required to suit specific installation plan.

Step 3 — Inspect Unit — Inspect unit for transportation damage. File any claim with transportation agency.

Confirm before installation of unit that voltage, amperage and circuit protection requirements listed on unit data plate agree with power supply provided.

On units with hinged panel option, check to be sure all latches are snug and in closed position.

Locate the carton containing the outside air hood parts; see Fig. 10. Do not remove carton until unit has been rigged and located in final position.

Step 4 — Provide Unit Support

ROOF CURB MOUNT — Accessory roof curb details and dimensions are shown in Fig. 5. Assemble and install accessory roof curb in accordance with instructions shipped with the curb.

NOTE: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket supplied with the roof curb as shown in Fig. 5. Improperly applied gasket can also result in air leaks and poor unit performance.

Curb should be level. This is necessary for unit drain to function properly. Unit leveling tolerances are shown in Fig. 6. Refer to Accessory Roof Curb Installation Instructions for additional information as required.

<table>
<thead>
<tr>
<th>Table 2 — Operating Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>48HC</td>
</tr>
<tr>
<td>UNITS LB (KG)</td>
</tr>
<tr>
<td>Base Unit</td>
</tr>
<tr>
<td>Economizer</td>
</tr>
<tr>
<td>Vertical</td>
</tr>
<tr>
<td>Horizontal</td>
</tr>
<tr>
<td>Powered Outlet</td>
</tr>
<tr>
<td>Humidi-Mizer System</td>
</tr>
<tr>
<td>Curb</td>
</tr>
<tr>
<td>14-in./356 mm</td>
</tr>
<tr>
<td>24-in./610 mm</td>
</tr>
</tbody>
</table>
NOTES:
1. ROOFCURB ACCESSORY IS SHIPPED DISASSEMBLED.
2. INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] # DENSITY.
3. DIMENSIONS IN [] ARE IN MILLIMETERS.
4. ROOFCURB: 18 GAUGE STEEL.
5. ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB).
6. SERVICE CLEARANCE 4 FEET ON EACH SIDE.
7. DIRECTION OF AIR FLOW.
8. CONNECTOR PACKAGE CRBTMPWR002A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGE CRBTMPWR004A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTIONS.
9. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
10. INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] # DENSITY.
11. DIMENSIONS IN [] ARE IN MILLIMETERS.
12. ROOFCURB: 18 GAUGE STEEL.
13. ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB).
14. SERVICE CLEARANCE 4 FEET ON EACH SIDE.
15. DIRECTION OF AIR FLOW.
16. CONNECTOR PACKAGE CRBTMPWR002A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGE CRBTMPWR004A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTIONS.
Fig. 6 — Unit Leveling Tolerances

Install insulation, cant strips, roofing felt, and counter flashing as shown. Ductwork must be attached to curb and not to the unit. The accessory thru-the-base power and gas connection package must be installed before the unit is set on the roof curb. If field-installed thru-the-roof curb gas connections are desired, use factory-supplied pipe coupling and gas plate assembly to mount the thru-the-roof curb connection to the roof curb. Gas connections and power connections to the unit must be field-installed after the unit is installed on the roof curb.

If electric and control wiring is to be routed through the basepan, attach the accessory thru-the-base service connections to the basepan in accordance with the accessory installation instructions.

SLAB MOUNT (HORIZONTAL UNITS ONLY) — Provide a level concrete slab that extends a minimum of 6 in. (150 mm) beyond unit cabinet. Install a gravel apron in front of condenser coil air inlet to prevent grass and foliage from obstructing airflow.

NOTE: Horizontal units may be installed on a roof curb if required.

ALTERNATE UNIT SUPPORT (IN LIEU OF CURB OR SLAB MOUNT) — A non-combustible sleeper rail can be used in the unit curb support area. If sleeper rails cannot be used, support the long sides of the unit with a minimum of 3 equally spaced 4-in. x 4-in. (102 mm x 102 mm) pads on each side.

Step 5 — Field Fabricate Ductwork — Cabinet return-air static pressure (a negative condition) shall not exceed 0.35 in. wg (87 Pa) with economizer or 0.45 in. wg (112 Pa) without economizer.

Fabricate supply ductwork so that the cross sectional dimensions are equal to or greater than the unit supply duct opening dimensions for the first 18 in. (458 mm) of duct length from the unit basepan.

Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

Ducts passing through unconditioned spaces must be insulated and covered with a vapor barrier.

If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.

A minimum clearance is not required around ductwork.

CAUTION

PROPERTY DAMAGE HAZARD

Failure to follow this caution may result in damage to roofing materials.

Membrane roofs can be cut by sharp sheet metal edges. Be careful when placing any sheet metal parts on such roof.

CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

All panels must be in place when rigging. Unit is not designed for handling by fork truck when panels or packaging are removed.

If using top crate as spreader bar, once unit is set, carefully lower wooden crate off building roof top to ground. Ensure that no people or obstructions are below prior to lowering the crate.
POSITIONING ON CURB — Position unit on roof curb so that the following clearances are maintained: 1/4 in. (6.4 mm) clearance between the roof curb and the base rail inside the front and back, 0.0 in. clearance between the roof curb and the base rail inside on the duct end of the unit. This will result in the distance between the roof curb and the base rail inside on the condenser end of the unit being approximately 3 5/16 in. (8 mm).

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

![Fig. 7 — Rigging Details](image)

NOTES:
1. SPREADER BARS REQUIRED — Top damage will occur if spreader bars are not used.
2. Dimensions in () are in millimeters.
3. Hook rigging shackles through holes in base rail, as shown in detail “A.” Holes in base rails are centered around the unit center of gravity. Use wooden top to prevent rigging.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>MAX WEIGHT</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb</td>
<td>kg</td>
</tr>
<tr>
<td>48HC*(A,B,D,E)07</td>
<td>1200</td>
<td>545</td>
</tr>
<tr>
<td>48HC*(D,E)08</td>
<td>1420</td>
<td>645</td>
</tr>
<tr>
<td>48HC*(D,E)09</td>
<td>1420</td>
<td>645</td>
</tr>
<tr>
<td>48HC*(D,E)11/12</td>
<td>1665</td>
<td>757</td>
</tr>
</tbody>
</table>

CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

All panels must be in place when rigging. Unit is not designed for handling by fork truck when panels or packaging are removed.

![Fig. 8 — Horizontal Conversion Panels](image)

Field-supplied flanges should be attached to horizontal duct openings and all ductwork should be secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof or building openings with counter flashing and mastic in accordance with applicable codes.

Do not cover or obscure visibility to the unit’s informative data plate when insulating horizontal ductwork.
Step 7 — Install Outside Air Hood

ECONOMIZER AND TWO POSITION DAMPER HOOD PACKAGE REMOVAL AND SETUP — FACTORY OPTION

1. The hood is shipped in knock-down form and must be field assembled. The indoor coil access panel is used as the hood top while the hood sides, divider and filter are packaged together, attached to a metal support tray using plastic stretch wrap, and shipped in the return air compartment behind the indoor coil access panel. The hood assembly’s metal tray is attached to the basepan and also attached to the damper using two plastic tie-wraps.

2. To gain access to the hood, remove the filter access panel. (See Fig. 9.)

3. Locate the (2) screws holding the metal tray to the base-pan and remove. Locate and cut the (2) plastic tie-wraps securing the assembly to the damper. (See Fig. 10) Be careful to not damage any wiring or cut tie-wraps securing any wiring.

4. Carefully lift the hood assembly (with metal tray) through the filter access opening and assemble per the steps outlined in Economizer Hood and Two-Position Hood, below.

ECONOMIZER HOOD AND TWO-POSITION HOOD

NOTE: If the power exhaust accessory is to be installed on the unit, the hood shipped with the unit will not be used and must be discarded. Save the aluminum filter for use in the power exhaust hood assembly.

1. The indoor coil access panel will be used as the top of the hood. Remove the screws along the sides and bottom of the indoor coil access panel. See Fig. 11.

2. Swing out indoor coil access panel and insert the hood sides under the panel (hood top). Use the screws provided to attach the hood sides to the hood top. Use screws provided to attach the hood sides to the unit. See Fig. 12.

3. Remove the shipping tape holding the economizer barometric relief damper in place (economizer only).

4. Insert the hood divider between the hood sides. See Fig. 12 and 13. Secure hood divider with 2 screws on each hood side. The hood divider is also used as the bottom filter rack for the aluminum filter.

5. Open the filter clips which are located underneath the hood top. Insert the aluminum filter into the bottom filter rack (hood divider). Push the filter into position past the open filter clips. Close the filter clips to lock the filter into place. See Fig. 13.

6. Caulk the ends of the joint between the unit top panel and the hood top.

7. Replace the filter access panel.
Step 8 — Install Flue Hood — Flue hood is shipped screwed to the basepan beside the burner compartment access panel. Remove from shipping location and using screws provided, install flue hood and screen in location shown in Fig. 14. Insert the flue hood’s side flange through the access panel cut-out, then rotate the flue hood until the top and bottom flanges contact the outside of the access panel; secure flue hood with screws.

Step 9 — Install Gas Piping — Installation of the gas piping must be accordance with local building codes and with applicable national codes. In U.S.A., refer to NFPA 54/ANSI Z223.1 National Fuel Gas Code (NFGC). In Canada, installation must be in accordance with the CAN/CSA B149.1 and CAN/CSA B149.2 installation codes for gas burning appliances.

This unit is factory equipped for use with Natural Gas fuel at elevations up to 2000 ft (610 m) above sea level. Unit may be field converted for operation at elevations above 2000 ft (610 m) and/or for use with liquefied petroleum fuel. See accessory kit installation instructions regarding these accessories.

NOTE: Furnace gas input rate on rating plate is for installation up to 2000 ft (610 m) above sea level. The input rating for altitudes above 2000 ft (610 m) must be derated by 4% for each 1000 ft (305 m) above sea level.

For natural gas applications, gas pressure at unit gas connection must not be less than 4 in. wg (996 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating. For liquefied petroleum applications, the gas pressure must not be less than 11 in. wg (2740 Pa) or greater than 13 in. wg (3240 Pa) at the unit connection.

Table 3 — Natural Gas Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>48HCD/E/F*</td>
<td>07, 08, 09, 11, 12</td>
<td>4.0 in. wg (996 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

Table 4 — Liquid Propane Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>48HCD/E/F*</td>
<td>07, 08, 09, 11, 12</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

The gas supply pipe enters the unit at the burner access panel on the front side of the unit, through the long slot at the bottom of the access panel. The gas connection to the unit is made to the 1/2-in. or 3/4-in. FPT gas inlet port on the unit gas valve.

Manifold pressure is factory-adjusted for NG fuel use. Adjust as required to obtain best flame characteristics.

Table 5 — Natural Gas Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>48HCD/E/F*</td>
<td>07, 08, 09, 11, 12</td>
<td>3.5 in. wg (872 Pa)</td>
<td>2.0 in. wg (498 Pa)</td>
</tr>
</tbody>
</table>

NOTE: LOW FIRE, 1.7 in. wg (423 Pa), applies to the following units only: 48HCD/E/F*07, 48HCD/E/F*08 and 48HCD/E/F*09

Manifold pressure for LP fuel use must be adjusted to specified range. Follow instructions in the accessory kit to make initial readjustment.

Table 6 — Liquid Propane Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>48HCD/E/F*</td>
<td>07, 08, 09, 11, 12</td>
<td>10.0 in. wg (2490 Pa)</td>
<td>5.7 in. wg (1420 Pa)</td>
</tr>
</tbody>
</table>

NOTE: LOW FIRE, 5.0 in. wg (1420 Pa), applies to the following units only: 48HCD/E/F*07, 48HCD/E/F*08 and 48HCD/E/F*09
Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe smaller than the size specified. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate.

The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required) or through unit basepan (factory option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 15.

The thru-base gas connector has male and female threads. The male threads protrude above the basepan of the unit; the female threads protrude below the basepan.

Check tightness of connector lock nuts before connecting gas piping.

Gas Line — Install a 1/2-in. (08 and 09 size Low Gas units only) or 3/4-in. (for all other units) NPT street elbow on the thru-base gas fitting. Attach an appropriate size pipe nipple with minimum length of 16-in. (406 mm) (field-supplied) to the street elbow and extend it through the access panel at the gas support bracket. See Fig. 17.

Other hardware required to complete the installation of the gas supply line will include a manual shutoff valve, a sediment trap (drip leg) and a ground-joint union. A pressure regulator valve may also be required (to convert gas pressure from pounds to inches of pressure). The manual shutoff valve must be located within 6-ft (1.83 m) of the unit. The union, located in the final leg entering the unit, must be located at least 9-in. (230 mm) away from the access panel to permit the panel to be removed for service. If a regulator valve is installed, it must be located a minimum of 4-ft (1220 mm) away from the unit’s flue outlet. Some municipal codes require that the manual shut-off valve be located upstream of the sediment trap. See Fig. 18 and Fig. 19 for typical piping arrangements for gas piping that has been routed through the sidewall of the curb. See Fig. 20 for typical piping arrangement when thru-base is used. Ensure that all piping does not block access to the unit’s main control box or limit the required working space in front of the control box.

<table>
<thead>
<tr>
<th>STEEL PIPE NOMINAL DIAMETER (in.)</th>
<th>SPACING OF SUPPORTS X DIMENSION (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>6</td>
</tr>
<tr>
<td>3/4 or 1</td>
<td>8</td>
</tr>
<tr>
<td>11/4 or larger</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 15 — Gas Piping Guide (with Accessory Thru-the-Curb Service Connections)

FACTORY OPTION THRU-BASE CONNECTIONS (GAS CONNECTIONS) — This service connection kit consists of a NPT gas adapter fitting, an electrical bulkhead connector and a 3/4-in. electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. See Fig. 16.
When installing the gas supply line, observe local codes pertaining to gas pipe installations. Refer to the NFPA 54/ANSI Z223.1 NFGC latest edition (in Canada, CAN/CSA B149.1). In the absence of local building codes, adhere to the following pertinent recommendations:

1. Avoid low spots in long runs of pipe. Grade all pipe 1/4-inch in every 15 ft (7 mm in every 5 m) to prevent traps. Grade all horizontal runs downward to risers. Use risers to connect to heating section and to meter.

2. Protect all segments of piping system against physical and thermal damage. Support all piping with appropriate straps, hangers, etc. Use a minimum of one hanger every 6 ft (1.8 m). For pipe sizes larger than 1/2-in., follow recommendations of national codes.

3. Apply joint compound (pipe dope) sparingly and only to male threads of joint when making pipe connections. Use only pipe dope that is resistant to action of liquefied petroleum gases as specified by local and/or national codes. If using PTFE (Teflon*) tape, ensure the material is Double Density type and is labeled for use on gas lines. Apply tape per manufacturer’s instructions.

4. Pressure-test all gas piping in accordance with local and national plumbing and gas codes before connecting piping to unit.

NOTE: Pressure test the gas supply system after the gas supply piping is connected to the gas valve. The supply piping must be disconnected from the gas valve during the testing of the piping systems when test pressure is in excess of 0.5 psig (3450 Pa). Pressure test the gas supply piping system at pressures equal to or less than 0.5 psig (3450 Pa). The unit heating section must be isolated from the gas piping system by closing the external main manual shutoff valve and slightly opening the ground-joint union.

Check for gas leaks at the field-installed and factory-installed gas lines after all piping connections have been completed. Use soap-and-water solution (or method specified by local codes and/or regulations).

WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

- Connect gas pipe to unit using a backup wrench to avoid damaging gas controls.
- Never purge a gas line into a combustion chamber.
- Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections.
- Use proper length of pipe to avoid stress on gas control manifold.

NOTE: If orifice hole appears damaged or it is suspected to have been re-drilled, check orifice hole with a numbered drill bit of correct size. Never re-drill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics.

* Teflon is a registered trademark of DuPont.
socket drive extension) and install it in the side drain connection.

Fig. 22 — Condensate Drain Pan (Side View)

The piping for the condensate drain and external trap can be completed after the unit is in place. See Fig. 23.

NOTE: Trap should be deep enough to offset maximum unit static difference. A 4-in. (102 mm) trap is recommended.

Fig. 23 — Condensate Drain Piping Details

All units must have an external trap for condensate drainage. Install a trap at least 4-in. (102 mm) deep and protect against freeze-up. If drain line is installed downstream from the external trap, pitch the line away from the unit at 1-in. per 10 ft (25 mm in 3 m) of run. Do not use a pipe size smaller than the unit connection (3/4-in.).

Step 11 — Make Electrical Connections

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Do not use gas piping as an electrical ground. Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code); ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

NOTE: Field-supplied wiring shall conform with the limitations of minimum 63°F (3°C) rise.

FIELD POWER SUPPLY — If equipped with optional Powered Convenience Outlet: The power source leads to the convenience outlet’s transformer primary are not factory connected. Installer must connect these leads according to required operation of the convenience outlet. If an always-energized convenience outlet operation is desired, connect the source leads to the line side of the unit-mounted disconnect. (Check with local codes to ensure this method is acceptable in your area.) If a de-energize via unit disconnect switch operation of the convenience outlet is desired, connect the source leads to the load side of the unit disconnect. On a unit without a unit-mounted disconnect, connect the source leads to compressor contactor C and indoor fan contactor IFC pressure lugs with unit field power leads (see Fig. 24).

Fig. 24 — Power Wiring Connections

Units Without Disconnect or HACR Option

Units With Disconnect or HACR Option

Field power wires will be connected line-side pressure lugs on the power terminal block or at factory-installed option non-fused disconnect or HACR circuit breaker.

Field power wires are connected to the unit at line-side pressure lugs on compressor contactor C and indoor fan contactor IFC (see wiring diagram label for control box component arrangement), at factory-installed option non-fused disconnect switch or HACR circuit breaker. Max wire size is #4 AWG (copper only) per pole on contactors and #2ga AWG (copper only) per pole on optional non-fused disconnect or HACR circuit breaker. See Fig. 24 and the unit label diagram for field power wiring connections.

NOTE: TEST LEADS — Unit may be equipped with short leads (pigtails) on the field line connection points on contactor C or optional disconnect switch. These leads are for factory run-test purposes only; remove and discard before connecting field power wires to unit connection points. Make field power connections directly to line connection pressure lugs only.
UNITS WITH FACTORY-INSTALLED NON-FUSED DISCONNECT OR HACR — The factory-installed option non-fused disconnect (NFD) or HACR switch is located in a weatherproof enclosure located under the main control box. The manual switch handle and shaft are shipped in the disconnect or HACR enclosure. Assemble the shaft and handle to the switch at this point. Discard the factory test leads (see Fig. 24).

Connect field power supply conductors to LINE side terminals when the switch enclosure cover is removed to attach the handle.

1. Remove the unit front panel (see Fig. 2 or Fig. 3).
2. Remove (3) hex screws on the NFD enclosure - (2) on the face of the cover and (1) on the left side cover. See Fig. 27.
3. Remove the front cover of the NFD enclosure.

4. Make sure the NFD shipped from the factory is at OFF position (the arrow on the black handle knob is at OFF).
5. Insert the shaft with the cross pin on the top of the shaft in the horizontal position.
6. Measure from the tip of the shaft to the top surface of the black pointer; the measurement should be 3.75 to 3.88 in. (95 to 99 mm).
7. Tighten the locking screw to secure the shaft to the NFD.
8. Turn the handle to the OFF position with red arrow pointing at OFF.
9. Install the handle on to the painted cover horizontally with the red arrow pointing to the left.
10. Secure the handle to the painted cover with (2) screws and lock washers supplied.
11. Engaging the shaft into the handle socket, re-install (3) hex screws on the NFD enclosure.
12. Re-install the unit front panel.

WARNING
Failure to follow this warning could result in personal injury, death, or property damage. Do not connect aluminum wire between disconnect switch and air conditioning unit. Use only copper wire. (See Fig. 25.)

Fig. 25 — Disconnect Switch and Unit

Fig. 26 — Location of Non-Fused Disconnect Enclosure

To field install the NFD shaft and handle:
1. Remove the unit front panel (see Fig. 2 or Fig. 3).
2. Remove (3) hex screws on the NFD enclosure - (2) on the face of the cover and (1) on the left side cover. See Fig. 27.
3. Remove the front cover of the NFD enclosure.

Fig. 27 — Handle and Shaft Assembly for NFD

Fig. 28 — Location of HACR Circuit Breaker Enclosure

To field install the HACR circuit breaker shaft and handle:
1. Remove the unit front panel (see Fig. 2 or Fig. 3).
2. Remove (3) hex screws on the HACR enclosure - (2) on the face of the cover and (1) on the left side cover. See Fig. 29.
3. Remove the front cover of the HACR enclosure.
4. Make sure the HACR circuit breaker shipped from the factory is at OFF position (the white arrow pointing at OFF).
5. Insert the shaft all the way with the cross pin on the top of the shaft in the horizontal position.
6. Tighten the locking screw to secure the shaft to the HACR circuit breaker.
7. Turn the handle to the OFF position with red arrow pointing at OFF.
8. Install the handle on to the painted cover horizontally with the red arrow pointing to the left.
9. Secure the handle to the painted cover with (2) screws and lock washers supplied.
10. Engaging the shaft into the handle socket, re-install (3) hex screws on the HACR circuit breaker enclosure.
11. Re-install the unit front panel.

Fig. 29 — Handle and Shaft Assembly for HACR Circuit Breaker

UNITS WITHOUT FACTORY-INSTALLED NON-FUSED DISCONNECT OR HACR CIRCUIT BREAKER — When installing units, provide a disconnect switch per NEC (National Electrical Code) of adequate size. Disconnect sizing data is provided on the unit informative plate. Locate on unit cabinet or within sight of the unit per national or local codes. Do not cover unit informative plate if mounting the disconnect on the unit cabinet.

ALL UNITS — All field wiring must comply with NEC and all local codes. Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate. See Fig. 24 and unit label diagram for power wiring connections to the unit and equipment ground. Maximum wire size is #4 ga AWG (copper only) per pole on contactors and #2ga AWG (copper only) per pole on optional non-fused disconnect or HACR.

Provide a ground-fault and short-circuit over-current protection device (fuse or breaker) per NEC Article 440 (or local codes). Refer to unit informative data plate for MOCP (Maximum Over-current Protection) device size.

NOTE: Units ordered with factory-installed HACR do not need an additional ground-fault and short-circuit over-current protective device unless required by local codes.

All field wiring must comply with the NEC and local requirements.

All units except 208/230-v units are factory wired for the voltage shown on the nameplate. If the 208/230-v unit is to be connected to a 208-v power supply, the control transformer must be rewired by moving the black wire with the 1/4-in. female spade connector from the 230-v connection and moving it to the 208-v 1/4-in. male terminal on the primary side of the transformer. Refer to unit label diagram for additional information.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula shown below to determine the percent of voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Carrier warranty.

Unbalanced 3-Phase Supply Voltage:

\[
\text{% Voltage Imbalance} = \frac{100 \times \text{max voltage deviation from average voltage}}{\text{average voltage}}
\]

Example: Supply voltage is 230-3-60.

\[
\begin{align*}
AB &= 224 \text{ v} \\
BC &= 231 \text{ v} \\
AC &= 226 \text{ v}
\end{align*}
\]

Average Voltage = \frac{224 + 231 + 226}{3} = \frac{681}{3} = 227

Determine maximum deviation from average voltage.

\[
\begin{align*}
(AB) &= 227 - 224 = 3 \text{ v} \\
(BC) &= 231 - 227 = 4 \text{ v} \\
(AC) &= 227 - 226 = 1 \text{ v}
\end{align*}
\]

Maximum deviation is 4 v.

Determine percent of voltage imbalance.

\[
\text{% Voltage Imbalance} = \frac{100 \times 4}{226} = 1.76\%
\]

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

NOTE: Check all factory and field electrical connections for tightness.
Two types of convenience outlets are offered on 48HC models: Non-powered and unit-powered. Both types provide a 125-volt GFCI (ground-fault circuit-interrupter) duplex receptacle rated at 15-A behind a hinged waterproof access cover, located on the end panel of the unit. See Fig. 30.

Installing Weatherproof Cover — A weatherproof while-in-use cover for the factory-installed convenience outlets is now required by UL standards. This cover cannot be factory-mounted due to its depth; it must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate.

The weatherproof cover kit is shipped in the unit’s control box. The kit includes the hinged cover, a backing plate and gasket.

DISCONNECT ALL POWER TO UNIT AND CONVENIENCE OUTLET. LOCK-OUT AND TAG-OUT ALL POWER.

Remove the blank cover plate at the convenience outlet; discard the blank cover.

Loosen the two screws at the GFCI duplex outlet, until approximately 1/2-in. (13 mm) under screw heads are exposed. Press the gasket over the screw heads. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket; tighten the two screws until snug (do not over-tighten).

Mount the weatherproof cover to the backing plate as shown in Fig. 31. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover. Check for full closing and latching.

Fig. 31 — Weatherproof Cover Installation

Non-powered type — This type requires the field installation of a general-purpose 125-volt 15-A circuit powered from a source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

Unit-powered type — A unit-mounted transformer is factory-installed to stepdown the main power supply voltage to the unit to 115-v at the duplex receptacle. This option also includes a manual switch with fuse, located in a utility box and mounted on a bracket behind the convenience outlet; access is through the unit’s control box access panel. See Fig. 30.

The primary leads to the convenience outlet transformer are not factory-connected. Selection of primary power source is a customer-option. If local codes permit, the transformer primary leads can be connected at the line-side terminals on the unit-mounted non-fused disconnect or HACR breaker switch; this will provide service power to the unit when the unit disconnect switch or HACR switch is open. Other connection methods will result in the convenience outlet circuit being de-energized when the unit disconnect or HACR switch is open. See Fig. 32.

Duty Cycle — The unit-powered convenience outlet has a duty cycle limitation. The transformer is intended to provide power on an intermittent basis for service tools, lamps, etc; it is not intended to provide 15-amps loading for continuous duty loads (such as electric heaters for overnight use). Observe a 50% limit on circuit loading above 8-amps (i.e., limit loads exceeding 8-amps to 30 minutes of operation every hour).

Test the GFCI receptacle by pressing the TEST button on the face of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Fuse on power type — The factory fuse is a Bussman “Fuse-tron” T-15, non-renewable screw-in (Edison base) type plug fuse.

Using unit-mounted convenience outlets: Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.
HACR CIRCUIT BREAKER — The amp rating of the HACR factory-installed option is based on the size, voltage, indoor motor and other electrical options of the unit as shipped from the factory. If field-installed accessories are added or changed in the field (i.e., power exhaust, ERV), the HACR circuit breaker may no longer be of the proper amp rating and therefore will need to be removed from the unit. See unit nameplate and label on factory-installed HACR circuit breaker for the amp rating of the HACR circuit breaker that was shipped with the unit from the factory. See unit nameplates for the proper fuse, HACR circuit breaker or maximum over-current protection device required on the unit with field-installed accessories.

Fig. 32 — Powered Convenience Outlet Wiring

FACTORY OPTION THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS) — This service connection kit consists of a 1/2-in. electrical bulkhead connector and a 1 1/4-in. electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. The 1/2-in. bulkhead connector enables the low-voltage control wires to pass through the basepan. The 1 1/4-in. electrical bulkhead connector allows the high-voltage power wires to pass through the basepan. See Fig. 16.

Check tightness of connector lock nuts before connecting electrical conduits.

Field-supplied and field-installed liquid-tight conduit connectors and conduit may be attached to the connectors on the basepan. Pull correctly rated high voltage and low voltage through appropriate conduits. Connect the power conduit to the internal disconnect (if unit is so equipped) or to the external disconnect (through unit side panel). A hole must be field cut in the main control box bottom on the left side so the 24-v control connections can be made. Connect the control power conduit to the unit control box at this hole.

UNITS WITHOUT THRU-BASE CONNECTIONS

1. Install power wiring conduit through side panel openings. Install conduit between disconnect and control box.
2. Install power lines to terminal connections as shown in Fig. 24.

FIELD CONTROL WIRING — The 48HC unit requires an external temperature control device. This device can be a thermostat (field-supplied) or a PremierLink™ controller (available as factory-installed option or as field-installed accessory, for use on a Carrier Comfort Network® or as a stand alone control) or the RTU Open Controller for Building Management Systems using non-CCN protocols (RTU Open controller is available as a factory-installed option only).

THERMOSTAT — Install a Carrier-approved accessory 2-stage thermostat according to installation instructions included with the accessory. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions.

If the thermostat contains a logic circuit requiring 24-v power, use a thermostat cable or equivalent single leads of different colors with minimum of seven leads. If the thermostat does not require a 24-v source (no "C" connection required), use a thermostat cable or equivalent with minimum of six leads. See Fig. 34 for typical low-voltage control connections. Check the thermostat installation instructions for additional features which might require additional conductors in the cable.

For wire runs up to 50 ft (15 m), use no. 18 AWG (American Wire Gage) insulated wire (35°C minimum). For 50 to 75 ft (15 to 23 m), use no. 16 AWG insulated wire (35°C minimum). For over 75 ft (23 m), use no. 14 AWG insulated wire (35°C minimum). All wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

UNIT WITHOUT THRU-BASE CONNECTION KIT — Pass the thermostat control wires through the hole provided in the end panel (see item "D" in the view labeled "LEFT" in Fig. 2 or Fig. 3); then feed the wires through the raceway built into the corner post to the control box. Pull the wires over to the terminal strip on the upper-left corner of the Central Terminal Board (CTB). See Fig. 35.

NOTE: If thru-the-bottom connections accessory is used, refer to the accessory installation instructions for information on routing power and control wiring.
HEAT ANTICIPATOR SETTINGS — Set heat anticipator settings at 0.14 amp for the first stage and 0.14 amp for second-stage heating, when available.

Humidi-MiZer® System Control Connections

HUMIDI-MIZER — SPACE RH CONTROLLER

NOTE: The Humidi-MiZer system is a factory-installed option which is only available for units equipped with belt-drive motors.

The Humidi-MiZer dehumidification system requires a field-supplied and installed space relative humidity control device. This device may be a separate humidistat control (contact closes on rise in space RH above control setpoint) or a combination thermostat-humidistat control device such as Carrier’s Edge Pro Thermidistat with isolated contact set for dehumidification control. The humidistat is normally used in applications where a temperature control is already provided (units with PremierLink™ control).

To connect the Carrier humidistat (HL38MG029):
1. Route the humidistat 2-conductor cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 35) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. Use wire nuts to connect humidistat cable to the leads in the low-voltage wiring (as shown in Fig. 38), connecting PNK to PNK and PNK/BLK to PNK/BLK.

To connect the Thermidistat device (33CS2PPRH-01):
1. Route the Thermidistat multi-conductor thermostat cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 35) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. The Thermidistat has dry contacts at terminals D1 and D2 for dehumidification operation (see Fig. 39). The dry contacts must be wired between CTB terminal R and the PNK/BLK lead to the LTLO switch with field-supplied wire nuts. Refer to the installation instructions included with the Carrier Edge® Pro Thermidistat device for more information.
Fig. 38 — Typical Humidi-MiZer® Adaptive Dehumidification System Humidistat Wiring
EconoMi$er® X (Factory-Installed Option)

PRODUCT DESCRIPTION — The EconoMi$er X system is an expandable economizer control system, which includes a W7220 economizer module (controller) with an LCD and keypad (See Fig. 40). The W7220 can be configured with optional sensors.

Economizer Module — The module is the core of the EconoMi$er X system. The module is mounted in the unit’s control box, and includes the user interface for the system. The W7220 economizer module provides the basic inputs and outputs to provide simple economizer control. When used with the optional sensors, the economizer module provides more advanced economizer functionality.

S-Bus Enthalpy Control Sensors — The sensor is a combination temperature and humidity sensor which is powered by and communicates on the S-Bus. Up to three sensors may be configured with the W7220 economizer module.

CO₂ Sensor (optional) — The sensor can be added for Demand Controlled Ventilation (DCV).

SPECIFICATIONS

- **W7220 Economizer Module** — The module is designed for use with 2 to 10 Vdc or bus communicating actuator. The module includes terminals for CO₂ sensor, Mixed Air sensor, and an Outdoor Dry Bulb sensor. Enthalpy and other options are available with bus sensors.

- **User Interface** — Provides status for normal operation, setup parameters, checkout tests, and alarm and error conditions with a 2-line 16 character LCD display and four button keypad.

- **Electrical**

 - **Rated Voltage** — 20 to 30 Vac RMS, 50/60 Hz
 - **Transformer** — 100 va maximum system input
 - **Nominal Power Consumption (at 24 Vac, 60 Hz)** — 11.5 VA without sensors or actuators
Relay Digital Output Rating at 30 Vac (maximum power from Class 2 input only) — 1.5A run:
3.5A inrush at 0.45PF (200,000 cycles) or
7.5A inrush at 0.45PF (100,000 cycles)
External Sensors Power Output — 21 Vdc ± 5% at 48mA

IMPORTANT: All inputs and outputs must be Class 2 wiring.

INPUTS
Sensors
NOTE: A Mixed Air (MA) analog sensor is required on all W7220 units; either an Outdoor Air (OA) sensor for dry bulb change over or an OA bus sensor for outdoor enthalpy change over is required in addition to the MA sensor. An additional Return Air (RA) bus sensor can be added to the system for differential enthalpy or dry bulb changeover. For differential dry bulb changeover a 20k ohm sensor is required in the OA and a bus sensor in the RA. DIP switch on RA bus sensor must be set in the RA position.

Dry Bulb Temperature (optional) and Mixed Air (required), 20k NTC
2-wire (18 to 22 AWG);
Temperature range -40 to 150°F (-40 to 65°C)
Temperature accuracy -0 F/+2°F

Temperature and Humidity, C7400S1000 (optional)
S-Bus; 2-wire (18 to 22 AWG)
Temperature: range -40 to 150°F (-40 to 65°C)
Temperature accuracy -0 F/+2°F
Humidity: range 0 to 100% RH with 5% accuracy.
NOTE: Up to three (3) S-Bus sensors may be connected to the W7220 economizer module. For outdoor air (OA), return air (RA) and discharge (supply) air (DA).

4 Binary Inputs — 1-wire 24 Vac + common GND (see page 27 for wiring details).
24 Vac power supply — 20 to 30 Vac 50/60Hz; 100 VA Class 2 transformer.

OUTPUTS
Actuator Signal: 2-10 Vdc; minimum actuator impedance is 2k ohm; bus two-wire output for bus communicating actuators.
Exhaust fan, Y1, Y2 and AUX1 O:
All Relay Outputs (at 30 Vac):
Running: 1.5A maximum
Inrush: 7.5A maximum

ENVIRONMENTAL
Operating Temperature:
-40 to 150°F (-40 to 65°C),
Exception of display operation down to -4°F with full recovery at -4°F from exposure to -40°F
Storage Temperature:
-40 to 150°F (-40 to 65°C)
Shipping Temperature:
-40 to 150°F (-40 to 65°C)
Relative Humidity:
5% to 95% RH non-condensing

ECONOMIZER MODULE WIRING DETAILS — Use Fig. 41 and Tables 7 and 8 to locate the wiring terminals for the Economizer module.
NOTE: The four terminal blocks are removable. You can slide out each terminal block, wire it, and then slide it back into place.

Table 7 — Economizer Module - Left Hand Terminal Blocks

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT</td>
<td>20k NTC</td>
<td>Mixed Air Temperature Sensor (Polarity Insensitive Connection)</td>
</tr>
<tr>
<td>OAT</td>
<td>20k NTC</td>
<td>Outdoor Air Temperature Sensor (Polarity Insensitive Connection)</td>
</tr>
<tr>
<td>S-BUS</td>
<td>S-BUS (Sylk Bus)</td>
<td>Enthalpy Control Sensor (Polarity Insensitive Connection)</td>
</tr>
<tr>
<td>IAQ 2-10</td>
<td>2-10 vdc</td>
<td>Air Quality Sensor Input (e.g. CO2 sensor)</td>
</tr>
<tr>
<td>IAQ COM</td>
<td>COM</td>
<td>Air Quality Sensor Common</td>
</tr>
<tr>
<td>IAQ 24V</td>
<td>24 vac</td>
<td>Air Quality Sensor 24 vac Source</td>
</tr>
<tr>
<td>ACT 2-10</td>
<td>2-10 vdc</td>
<td>Damper Actuator Output (2-10 vdc)</td>
</tr>
<tr>
<td>ACT COM</td>
<td>Damper Actuator Output Common</td>
<td></td>
</tr>
<tr>
<td>ACT 24v</td>
<td>24 vac</td>
<td>Damper Actuator 24 vac Source</td>
</tr>
</tbody>
</table>
Table 8 — Economizer Module - Right Hand Terminal Blocks

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUX2 I</td>
<td>24 vac IN</td>
<td>The first terminal is not used.</td>
</tr>
<tr>
<td>OCC</td>
<td>24 vac IN</td>
<td>Shut Down (SD) or HEAT (W) Conventional only and Heat Pump Changeover (O-B) in Heat Pump mode.</td>
</tr>
<tr>
<td>E-GND</td>
<td>E-GND</td>
<td>Occupied/Unoccupied Input</td>
</tr>
<tr>
<td>EXH1</td>
<td>24 vac OUT</td>
<td>Exhaust Fan 1 Output</td>
</tr>
<tr>
<td>AUX1 O</td>
<td>24 vac OUT</td>
<td>Programmable: Exhaust fan 2 output or ERV or System alarm output</td>
</tr>
</tbody>
</table>

Bottom Right Terminal Blocks

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S-BUS</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
<tr>
<td>2</td>
<td>S-BUS</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
</tbody>
</table>

S-BUS SENSOR WIRING — The labels on the sensors and controller are color coded for ease of installation. Orange labeled sensors can only be wired to orange terminals on the controller. Brown labeled sensors can only be wired to S-bus (brown) terminals. Use Fig. 42 and Table 10 to locate the wiring terminals for each S-Bus sensor.

Use Fig. 42 and Table 9 to locate the wiring terminals for each enthalpy control sensor.

Use Fig. 42 and Table 10 to set the DIP switches for the desired use of the sensor.

Table 9 — HH57AC081 Sensor Wiring Terminations

<table>
<thead>
<tr>
<th>TERMINAL NUMBER</th>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S-BUS</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
<tr>
<td>2</td>
<td>S-BUS</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
</tbody>
</table>

NOTE: When a S-Bus sensor is connected to an existing network, it will take 60 minutes for the network to recognize and auto-configure itself to use the new sensor.

During the 60 minute setup period, no alarms for sensor failures (except SAT) will be issued and no economizing function will be available.

CO2 SENSOR WIRING — When using a CO2 sensor the black and brown common wires are internally connected and only one is connected to “IAQ COM” on the W7220. Use the power from the W7220 to power the CO2 sensor OR make sure the ground for the power supplies are common. See Fig. 43 for CO2 sensor wiring.

Fig. 42 — S-Bus Sensor DIP Switches

Fig. 43 — CO2 Sensor Wiring

INTERFACE OVERVIEW — This section describes how to use the Economizer’s user interface for:
- Keypad and menu navigation
- Settings and parameter changes
- Menu structure and selection

USER INTERFACE — The user interface consists of a 2-line LCD display and a 4-button keypad on the front of the economizer controller.

KEYPAD — The four navigation buttons (see Fig. 44) are used to scroll through the menus and menu items, select menu items, and to change parameter and configuration settings.

To use the keypad when working with menus:
- Press the ▲ (Up arrow) button to move to the previous menu.
- Press the ▼ (Down arrow) button to move to the next menu.
• Press the (Enter) button to display the first item in the currently displayed menu.

Fig. 44 — W7220 Controller Navigation Buttons

Press the (Menu Up/Exit) button to exit a menu’s item and return to the list of menus. To use the keypad when working with Setpoints, System and Advanced Settings, Checkout tests and Alarms:

1. Navigate to the desired menu.
2. Press the (Enter) button to display the first item in the currently displayed menu.
3. Use the ▲ and ▼ buttons to scroll to the desired parameter.
4. Press the (Enter) button to display the value of the currently displayed item.
5. Press the ▲ button to increase (change) the displayed parameter value.
6. Press the ▼ button to decrease (change) the displayed parameter value.

NOTE: When values are displayed, pressing and holding the or button causes the display to automatically increment.

7. Press the (Enter) button to accept the displayed value and store it in nonvolatile RAM.
8. “CHANGE STORED” displays.
9. Press the (Enter) button to return to the current menu parameter.

10. Press the (Menu Up/Exit) button to return to the previous menu.

MENU STRUCTURE — Table 11 illustrates the complete hierarchy of menus and parameters for the EconoMi$er® X system.

The Menus in display order are:
• STATUS
• SETPOINTS
• SYSTEM SETUP
• ADVANCED SETUP
• CHECKOUT
• ALARMS

IMPORTANT: Table 11 illustrates the complete hierarchy. Your menu parameters may be different depending on your configuration.

For example if you do not have a DCV (CO₂) sensor, then none of the DCV parameters appear and only MIN POS will display. If you have a CO₂ sensor, the DCV MIN and DCV MAX will appear AND if you have 2 speed fan DCV MIN (high and low speed) and DCV MAX (high and low speed will appear).

NOTE: Some parameters in the menus use the letters MA or MAT, indicating a mixed air temperature sensor location before the cooling coil. This unit application has the control sensor located after the cooling coil, in the fan section, where it is designated as (Cooling) Supply Air Temperature or SAT sensor.

SETUP AND CONFIGURATION — Before being placed into service, the W7220 Economizer module must be setup and configured for the installed system.

IMPORTANT: During setup, the economizer module is live at all times.

The setup process uses a hierarchical menu structure that is easy to use. Press the ▲ and ▼ arrow buttons to move forward and backward through the menus and press the button to select and confirm setup item changes.

TIME-OUT AND SCREENSAVER — When no buttons have been pressed for 10 minutes, the LCD displays a screensaver, which cycles through the Status items. Each Status item displays in turn and cycles to the next item after 5 seconds.
Table 11 — Menu Structure

<table>
<thead>
<tr>
<th>Menu</th>
<th>Parameter</th>
<th>Parameter Default Value</th>
<th>Parameter Range and Increment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECONO AVAIL</td>
<td>NO</td>
<td>YES/NO</td>
<td></td>
<td>FIRST STAGE COOLING DEMAND (Y1–IN) YES = economizing available; the system can use outside air for free cooling when required</td>
</tr>
<tr>
<td>ECONOMIZING</td>
<td>NO</td>
<td>YES/NO</td>
<td></td>
<td>FIRST STAGE COOLING RELAY OUTPUT YES = outside air being used for 1 stage cooling</td>
</tr>
<tr>
<td>OCCUPIED</td>
<td>NO</td>
<td>YES/NO</td>
<td></td>
<td>OCCUPIED YES = OCC signal received from space thermostat or unitary controller YES = 24 Vac on terminal OCC NO = 0 Vac on terminal OCC</td>
</tr>
<tr>
<td>HEAT PUMP</td>
<td>N/A</td>
<td>COOL, HEAT</td>
<td></td>
<td>HEAT PUMP MODE Displays COOL or HEAT when system is set to heat pump (Non-conventional)</td>
</tr>
<tr>
<td>COOL Y1—IN</td>
<td>OFF</td>
<td>ON/OFF</td>
<td></td>
<td>FIRST STAGE COOLING DEMAND (Y1–IN) Y1–I signal from space thermostat or unitary controller for cooling stage 1 ON = 24 Vac on terminal Y1–I OFF = 0 Vac on terminal Y1–I</td>
</tr>
<tr>
<td>COOL Y1—OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td></td>
<td>FIRST STAGE COOLING RELAY OUTPUT Cool stage 1 Relay Output to stage 1 mechanical cooling (Y1–OUT terminal)</td>
</tr>
<tr>
<td>COOL Y2—IN</td>
<td>OFF</td>
<td>ON/OFF</td>
<td></td>
<td>SECOND STAGE COOLING DEMAND (Y2–IN) Y2–I signal from space thermostat or unitary controller for stage 2 cooling ON = 24 Vac on terminal Y2–I OFF = 0 Vac on terminal Y2–I</td>
</tr>
<tr>
<td>COOL Y2—OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td></td>
<td>SECOND STAGE COOLING RELAY OUTPUT Cool Stage 2 Relay Output to mechanical cooling (Y2–OUT terminal)</td>
</tr>
<tr>
<td>MA TEMP</td>
<td>_ _ _ F</td>
<td>0 to 140°F</td>
<td></td>
<td>SUPPLY AIR TEMPERATURE, Cooling Mode Displays value of measured mixed air from MAT sensor. Displays _ _ _ F if not connected, short or out-of-range.</td>
</tr>
<tr>
<td>DA TEMP</td>
<td>_ _ _ F</td>
<td>0 to 140°F</td>
<td></td>
<td>DISCHARGE AIR TEMPERATURE, after Heating section Displays when Discharge Air sensor is connected and displays measured discharge temperature. Displays _ _ _ F if sensor sends invalid value, if not connected, short or out-of-range.</td>
</tr>
<tr>
<td>OA TEMP</td>
<td>_ _ _ F</td>
<td>-40 to 140°F</td>
<td></td>
<td>OUTSIDE AIR TEMP Displays measured value of outdoor air temperature. Displays _ _ _ F if sensor sends invalid value, short or out-of-range.</td>
</tr>
<tr>
<td>OA HUM</td>
<td>_ _ %</td>
<td>0 to 100%</td>
<td></td>
<td>OUTSIDE AIR RELATIVE HUMIDITY Displays measured value of outdoor humidity from OA sensor. Displays _ _ % if not connected short, or out-of-range.</td>
</tr>
<tr>
<td>RA TEMP</td>
<td>_ _ _ F</td>
<td>0 to 140°F</td>
<td></td>
<td>RETURN AIR TEMPERATURE Displays measured value of return air temperature from RAT sensor. Displays _ _ _ F if sensor sends invalid value, if not connected, short or out-of-range.</td>
</tr>
<tr>
<td>RA HUM</td>
<td>_ _ %</td>
<td>0 to 100%</td>
<td></td>
<td>RETURN AIR RELATIVE HUMIDITY Displays measured value of return air humidity from RA sensor. Displays _ _ % if sensor sends invalid value, if not connected, short or out-of-range.</td>
</tr>
<tr>
<td>IN CO2</td>
<td>_ _ _ ppm</td>
<td>0 TO 2000 ppm</td>
<td></td>
<td>SPACE/RETURN AIR CO₂ Displays value of measured CO₂ from CO₂ sensor. Invalid if not connected, short or out-of-range</td>
</tr>
<tr>
<td>DCV STATUS</td>
<td>N/A</td>
<td>ON/OFF</td>
<td></td>
<td>DEMAND CONTROLLED VENTILATION STATUS Displays ON if above setpoint and OFF if below setpoint, and ONLY if a CO₂ sensor is connected.</td>
</tr>
<tr>
<td>DAMPER OUT</td>
<td>2.0v</td>
<td>2.0 TO 10.0v</td>
<td></td>
<td>Displays voltage output to the damper actuator.</td>
</tr>
<tr>
<td>ACT POS</td>
<td>N/A</td>
<td>0 to 100%</td>
<td></td>
<td>Displays actual position of outdoor air damper actuator.</td>
</tr>
</tbody>
</table>
Table 11 — Menu Structure (cont)

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCREMENT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT COUNT</td>
<td>N/A</td>
<td>1 to 65535</td>
<td>Displays number of times actuator has cycled. 1 cycle equals 180 deg. of actuator movement in any direction.</td>
<td></td>
</tr>
<tr>
<td>ACTUATOR</td>
<td>N/A</td>
<td>OK/Alarm (on Alarm menu)</td>
<td>Displays ERROR if voltage or torque is below actuator range.</td>
<td></td>
</tr>
<tr>
<td>EXH1 OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>EXHAUST STAGE 1 RELAY OUTPUT Output of EXH1 terminal: ON = relay closed OFF = relay open</td>
<td></td>
</tr>
<tr>
<td>EXH2 OUT</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>EXHAUST STAGE 2 RELAY OUTPUT Output of AUX terminal; displays only if AUX = EXH2</td>
<td></td>
</tr>
<tr>
<td>ERV</td>
<td>OFF</td>
<td>ON/OFF</td>
<td>ENERGY RECOVERY VENTILATOR Output of AUX terminal; displays only if AUX = ERV</td>
<td></td>
</tr>
<tr>
<td>MECH COOL ON or HEAT STAGES ON</td>
<td>0</td>
<td>0, 1, or 2</td>
<td>Displays stage of mechanical cooling that is active. Displays the stage of heat pump heating that is active.</td>
<td></td>
</tr>
<tr>
<td>FAN SPEED</td>
<td>N/A</td>
<td>LOW or HIGH SUPPLY FAN SPEED Displays speed setting of fan on a 2-speed fan unit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W (HEAT ON)</td>
<td>N/A</td>
<td>ON/OFF</td>
<td>HEAT DEMAND STATUS Displays status of heat demand on a 2-speed fan unit.</td>
<td></td>
</tr>
<tr>
<td>MAT SET</td>
<td>53F</td>
<td>38 to 65°F; increment by 1</td>
<td>SUPPLY AIR SETPOINT Setpoint determines where the economizer will modulate the OA damper to maintain the mixed air temperature.</td>
<td></td>
</tr>
<tr>
<td>LOW T LOCK</td>
<td>32F</td>
<td>-45 to 80°F; increment by 1</td>
<td>COMPRESSOR LOW TEMPERATURE LOCKOUT Setpoint determines outdoor temperature when the mechanical cooling cannot be turned on. Commonly referred to as the Compressor lockout.</td>
<td></td>
</tr>
<tr>
<td>DRYBLB SET</td>
<td>63F</td>
<td>48 to 80°F; increment by 1</td>
<td>OA DRY BULB TEMPERATURE CHANGE/OVER SETPOINT Setpoint determines where the economizer will assume outdoor air temperature is good for free cooling; e.g.; at 63°F unit will economize at 62°F and below and not economize at 64°F and above. There is a 2°F deadband.</td>
<td></td>
</tr>
<tr>
<td>ENTH CURVE</td>
<td>ES3</td>
<td>ES1, ES2, ES3, ES4, or ES5</td>
<td>ENTHALPY CHANGE/OVER CURVE Enthalpy boundary “curves” for economizing using single enthalpy.</td>
<td></td>
</tr>
<tr>
<td>DVC SET</td>
<td>1100ppm</td>
<td>500 to 2000ppm; increment by 100</td>
<td>DEMAND CONTROLLED VENTILATION Displays only if CO2 sensor is connected. Setpoint for Demand Control Ventilation of space. Above the setpoint, the OA dampers will modulate open to bring in additional OA to maintain a space ppm level below the setpoint.</td>
<td></td>
</tr>
<tr>
<td>MIN POS</td>
<td>2.8 V</td>
<td>2 to 10 Vdc</td>
<td>VENTILATION MINIMUM POSITION Displays ONLY if a CO2 sensor is NOT connected.</td>
<td></td>
</tr>
<tr>
<td>VENTMAX</td>
<td>2.8 V</td>
<td>2 to 10 Vdc</td>
<td>DCV MAXIMUM DAMPER POSITION Displays only if a CO2 sensor is connected. Used for Vbz (ventilation max cfm) setpoint. Displays 2 to 10 V if <3 sensors (RA, OA, and MA). In AUTO mode dampers controlled by CFM.</td>
<td></td>
</tr>
<tr>
<td>VENTMIN</td>
<td>2.25 V</td>
<td>2 to 10 Vdc or 100 to 9990 cfm; increment by 10</td>
<td>DCV MINIMUM DAMPER POSITION Displays only if a CO2 sensor is connected. Used for Vb (ventilation min cfm) setpoint. Displays 2 to 10 V if <3 sensors (RA, OA, and MA). Va is only set if DCV is used. This is the ventilation for less than maximum occupancy of the space. In AUTO mode dampers controlled by CFM.</td>
<td></td>
</tr>
<tr>
<td>ERV OAT SP</td>
<td>32°F</td>
<td>0 to 50°F; increment by 1</td>
<td>ENERGY RECOVERY VENTILATOR UNIT OUTDOOR AIR TEMPERATURE SETPOINT Only when AUX1 O = ERV</td>
<td></td>
</tr>
<tr>
<td>EXH1 SET</td>
<td>50%</td>
<td>0 to 100%; increment by 1</td>
<td>EXHAUST FAN STAGE 1 SETPOINT Setpoint for OA damper position when exhaust fan 1 is powered by the economizer. With 2-speed fan units Exh1 L (low speed fan) and Exh1 H (high speed fan) settings are required. Default for Exh1 L is 65% and Exh1 H is 50%</td>
<td></td>
</tr>
<tr>
<td>EXH2 SET</td>
<td>75%</td>
<td>0 to 100%; increment by 1</td>
<td>EXHAUST FAN STAGE 2 SETPOINT Setpoint for OA damper position when exhaust fan 2 is powered by the economizer. Only used when AUX1 O is set to EH2. With 2-speed fan units Exh2 L (low speed fan) and Exh2 H (high speed fan) settings are required. Default for Exh2 L is 80% and Exh2 H is 75%</td>
<td></td>
</tr>
<tr>
<td>MENU</td>
<td>PARAMETER</td>
<td>PARAMETER DEFAULT VALUE</td>
<td>PARAMETER RANGE AND INCREMENT</td>
<td>NOTES</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>INSTALL</td>
<td>01/01/10</td>
<td>N/A</td>
<td>Display order = MM/DD/YY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Setting order = DD, MM, then YY.</td>
<td></td>
</tr>
<tr>
<td>UNITS DEG</td>
<td>F</td>
<td>F or C</td>
<td>Sets economizer controller in degrees Fahrenheit or Celsius</td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT</td>
<td>CONV</td>
<td>Conventional or HP</td>
<td>CONV = conventional; HP O/B = Enable Heat Pump mode. Use AUX2 I for Heat Pump input from thermostat or controller. See Menu Note 7.</td>
<td></td>
</tr>
<tr>
<td>AUX2 IN</td>
<td>W</td>
<td>SD/W or HP(O)/HP(B)</td>
<td>In CONV mode: SD = Enables configuration of shutdown (default); W = Inform controller that system is in heating mode. NOTE: If using 2-speed fan mode, you must program CONV mode for W. Shutdown is not available in 2-speed fan mode. See Menu Note 7. In HP O/B mode: HP(O) = energize heat pump on Cool (default); HP(B) = energize heat pump on heat.</td>
<td></td>
</tr>
<tr>
<td>FAN SPEED</td>
<td>2 speed</td>
<td>1 speed/2 speed</td>
<td>Sets the economizer controller for operation of 1 speed or 2 speed supply fan. NOTE: 2-speed fan option also needs Heat (W1) programmed in AUX 2 In. See Menu Note 7.</td>
<td></td>
</tr>
<tr>
<td>FAN CFM</td>
<td>5000cfm</td>
<td>100 to 15000 cfm; increment by 100</td>
<td>UNIT DESIGN AIRFLOW (CFM) Enter only if using DCVAL ENA = AUTO The value is on the nameplate label for the specific unit.</td>
<td></td>
</tr>
<tr>
<td>AUX1 OUT</td>
<td>NONE</td>
<td>NONE</td>
<td>Select OUTPUT for AUX1 O relay • NONE = not configured (output is not used) • ERV = Energy Recovery Ventilator • EXH2 = second damper position relay closure for second exhaust fan • SYS = use output as an alarm signal</td>
<td></td>
</tr>
<tr>
<td>OCC</td>
<td>INPUT</td>
<td>INPUT or ALWAYS</td>
<td>OCCUPIED MODE BY EXTERNAL SIGNAL</td>
<td></td>
</tr>
<tr>
<td>FACTORY DEFAULT</td>
<td>NO</td>
<td>NO or YES</td>
<td>Resets all set points to factory defaults when set to YES. LCD will briefly flash YES and change to NO but all parameters will change to the factory default values. NOTE: RECHECK AUX2 IN and FAN TYPE for required 2-speed values,</td>
<td></td>
</tr>
<tr>
<td>MA LO SET</td>
<td>45°F</td>
<td>35 to 55°F; incremented by 10</td>
<td>SUPPLY AIR TEMPERATURE LOW LIMIT Temperature to achieve Freeze Protection (close damper and alarm if temperature falls below setup value).</td>
<td></td>
</tr>
<tr>
<td>FREEZE POS</td>
<td>CLO</td>
<td>CLO or MIN</td>
<td>FREEZE PROTECTION DAMPER POSITION Damper position when freeze protection is active (closed or MIN POS).</td>
<td></td>
</tr>
<tr>
<td>CO2 ZERO</td>
<td>0ppm</td>
<td>0 to 500 ppm; increment by 10</td>
<td>CO2 ppm level to match CO2 sensor start level.</td>
<td></td>
</tr>
<tr>
<td>CO2 SPAN</td>
<td>2000ppm</td>
<td>1000 to 3000 ppm; increment by 10</td>
<td>CO2 ppm span to match CO2 sensor.</td>
<td></td>
</tr>
<tr>
<td>STG3 DLY</td>
<td>2.0h</td>
<td>0 min, 5 min, 15 min, then 15 min intervals. Up to 4 hrs or OFF</td>
<td>COOLING STAGE 3 DELAY Delay after stage 2 cool has been active. Turns on 2nd stage of cooling when economizer is 1st stage and mechanical cooling is 2nd stage. Allows three stages of cooling, 1 economizer and 2 mechanical. OFF = no Stage 3 cooling</td>
<td></td>
</tr>
<tr>
<td>SD DMPR POS</td>
<td>CLO</td>
<td>CLO or OPN</td>
<td>Indicates shutdown signal from space thermostat or unitary controller. When controller receives 24 Vac input on the SD terminal in conventional mode, the OA damper will open if programmed for OPN and OA damper will close if programmed for CLO. All other controls, e.g., fans, etc. will shut off.</td>
<td></td>
</tr>
<tr>
<td>DA LO ALM</td>
<td>45°F (7°C)</td>
<td>35 to 65°F; (2 to 18°C) incremented by 5 deg.</td>
<td>Used for alarm when the DA air temperature is too low. Set lower range of alarm, below this temperature the alarm will show on the display.</td>
<td></td>
</tr>
<tr>
<td>DA HI ALM</td>
<td>80°F (27°C)</td>
<td>70 to 180°F; (21 to 82°C) incremented by 5 deg.</td>
<td>Used for alarm when the DA air temperature is too high. Set upper range of alarm, above this temperature the alarm will show on the display.</td>
<td></td>
</tr>
<tr>
<td>DCVCAL ENA</td>
<td>MAN</td>
<td>MAN (manual) AUTO</td>
<td>Turns on the DCV automatic control of the dampers. Resets ventilation based on the RA, OA, and MA sensor conditions. Requires all 3 RA, OA, and MA sensors.</td>
<td></td>
</tr>
<tr>
<td>MENU</td>
<td>PARAMETER</td>
<td>PARAMETER DEFAULT VALUE</td>
<td>PARAMETER RANGE AND INCREMENT</td>
<td>NOTES</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ADVANCED SETUP (CONT)</td>
<td>MAT T CAL</td>
<td>0.0°F</td>
<td>±2.5°F</td>
<td>SUPPLY AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>OAS T CAL</td>
<td>0.0°F</td>
<td>±2.5°F</td>
<td>OUTSIDE AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>OA H CAL</td>
<td>0% RH</td>
<td>±10% RH</td>
<td>OUTSIDE AIR HUMIDITY CALIBRATION Allows for operator to adjust for an out of calibration humidity sensor.</td>
</tr>
<tr>
<td></td>
<td>RA T CAL</td>
<td>0.0°F</td>
<td>±2.5°F</td>
<td>RETURN AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>RA H CAL</td>
<td>0% RH</td>
<td>±10% RH</td>
<td>DISCHARGE AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration temperature sensor.</td>
</tr>
<tr>
<td></td>
<td>DA T CAL</td>
<td>0.0°F</td>
<td>±2.5°F</td>
<td>TIME DELAY ON 2nd STAGE ECONOMIZING When in economizing mode this is the delay for the high speed fan to try to satisfy the call for second stage cooling before the first stage mechanical cooling is enabled.</td>
</tr>
<tr>
<td></td>
<td>2SP FAN DELAY</td>
<td>5 Minutes</td>
<td>0 to 20 minutes in 1 minute increments</td>
<td></td>
</tr>
<tr>
<td>CHECKOUT</td>
<td>DAMPER MINIMUM POSITION</td>
<td>N/A</td>
<td>N/A</td>
<td>The checkout for the damper minimum position is based on the system. See table</td>
</tr>
<tr>
<td></td>
<td>DAMPER OPEN</td>
<td>N/A</td>
<td>N/A</td>
<td>Position damper to the full open position. Exhaust fan contacts enable during the DAMPER OPEN test. Make sure you pause in the mode to allow exhaust contacts to energize due to the delay in the system.</td>
</tr>
<tr>
<td></td>
<td>DAMPER CLOSE</td>
<td>N/A</td>
<td>N/A</td>
<td>Positions damper to the fully closed position</td>
</tr>
<tr>
<td></td>
<td>CONNECT Y1–O</td>
<td>N/A</td>
<td>N/A</td>
<td>Closes the Y1-O relay (Y1-O)</td>
</tr>
<tr>
<td></td>
<td>CONNECT Y2–O</td>
<td>N/A</td>
<td>N/A</td>
<td>Closes the Y2-O relay (Y2-O)</td>
</tr>
<tr>
<td></td>
<td>CONNECT AUX1–O</td>
<td>N/A</td>
<td>N/A</td>
<td>Energizes the AUX output. If Aux setting is: • NONE — not action taken • ERV — 24 Vac out. Turns on or signals an ERV that the conditions are not good for economizing but are for ERV operation. • SYS — 24 Vac out. Issues a system alarm</td>
</tr>
<tr>
<td></td>
<td>CONNECT EXH1</td>
<td>N/A</td>
<td>N/A</td>
<td>Closes the power exhaust fan 2 relay (EXH1)</td>
</tr>
<tr>
<td>ALARMS</td>
<td>MAT SENS ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>SUPPLY AIR TEMPERATURE SENSOR ERROR Mixed air sensor has failed or become disconnected - check wiring then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>CO2 SENS ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>CO2 SENSOR ERROR CO2 sensor has failed, gone out of range or become disconnected - check wiring then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>OA SYLK T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>OUTSIDE AIR S-BUS SENSOR ERROR Outdoor air enthalpy sensor has failed or become disconnected - check wiring then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>OA SYLK H ERR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RA SYLK T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>RETURN AIR S-BUS SENSOR ERROR Return air enthalpy sensor has failed or become disconnected - check wiring then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>DA SYLK H ERR</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OA SENS T ERR</td>
<td>N/A</td>
<td>N/A</td>
<td>DISCHARGE AIR S-BUS SENSOR ERROR Discharge air sensor has failed or become disconnected - check wiring then replace sensor if the alarm continues.</td>
</tr>
<tr>
<td></td>
<td>ACT ERROR</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR ERROR Actuator has failed or become disconnected - check for stall, over voltage, under voltage and actuator count. Replace actuator if damper is movable and supply voltage is between 21.6 V and 26.4 V. Check actuator count on STATUS menu.</td>
</tr>
<tr>
<td></td>
<td>FREEZE ALARM</td>
<td>N/A</td>
<td>N/A</td>
<td>Check if outdoor temperature is below the LOW Temp Lockout on set-point menu. Check if Mixed air temperature on STATUS menu is below the Lo Setpoint on Advanced menu. When conditions are back in normal range then the alarm will go away.</td>
</tr>
</tbody>
</table>
Table 11 — Menu Structure (cont)

<table>
<thead>
<tr>
<th>ALARMS (CONT)</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCREMENT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTDOWN ACTIVE</td>
<td>N/A</td>
<td>N/A</td>
<td>AUX2 IN is programmed for SHUTDOWN and 24 V has been applied to AUX2 IN terminal.</td>
<td></td>
</tr>
<tr>
<td>DMP CAL RUNNING</td>
<td>N/A</td>
<td>N/A</td>
<td>DAMPER CALIBRATION ROUTINE RUNNING
When DCV Auto enable has been programmed, when the W7220 is completing a calibration on the dampers, this alarm will display. Wait until the calibration is completed and the alarm will go away. Must have OA, MA and RA sensors for DCV calibration; set up in the Advanced setup menu.</td>
<td></td>
</tr>
<tr>
<td>DA SENS ALM</td>
<td>N/A</td>
<td>N/A</td>
<td>DISCHARGE AIR TEMPERATURE SENSOR ALARM
Discharge air temperature is out of the range set in the ADVANCED SETUP Menu. Check the temperature of the discharge air.</td>
<td></td>
</tr>
<tr>
<td>SYS ALARM</td>
<td>N/A</td>
<td>N/A</td>
<td>When AUX1-0 is set to SYS and there is any alarm (e.g., failed sensors, etc.), the AUX1-0 terminal has 24 Vac out.</td>
<td></td>
</tr>
<tr>
<td>ACT UNDER V</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR VOLTAGE LOW
Voltage received by actuator is above expected range.</td>
<td></td>
</tr>
<tr>
<td>ACT OVER V</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR VOLTAGE HIGH
Voltage received by actuator is below expected range.</td>
<td></td>
</tr>
<tr>
<td>ACT STALLED</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR STALLED
Actuator stopped before achieving commanded position.</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Table 11 illustrates the complete hierarchy. Your menu parameters may be different depending on your configuration. For example if you do not have a DCV (CO2) sensor, then none of the DCV parameters appear.
2. When values are displayed, pressing and holding the ▲ or ▼ button causes the display to automatically increment.
3. ERV Operation: When in cooling mode AND the conditions are NOT OK for economizing - the ERV terminal will be energized. In the Heating mode, the ERV terminal will be energized when the OA is below the ERV OAT setpoint in the setpoint menu.

For damper minimum position settings and checkout menu readings, see Table 12. For dry bulb operation with a 1 speed indoor fan, with or without DCV, see Tables 13 and 14. For enthalpy operation with a 1 speed indoor fan, with or without DCV, see Tables 15 and 16. For dry bulb operation with a 2 speed indoor fan, with or without DCV, see Tables 17 and 18. For enthalpy operation with a 2 speed indoor fan, with or without DCV, see Tables 19 and 20.
Table 12 — Damper Minimum Position Settings and Readings on Checkout Menu

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (CO₂ SENSOR)</th>
<th>FAN SPEED</th>
<th>SETPOINTS</th>
<th>CHECKOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>1</td>
<td>MIN POS</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MIN POS H</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN POS L</td>
<td>VMAX–LS</td>
</tr>
<tr>
<td>YES</td>
<td>1</td>
<td>VENT MIN</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MAX</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>VENT MIN H</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MAX H</td>
<td>VMAX–LS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MIN L</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENT MAX L</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 13 — Dry Bulb Operation No DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0/v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 14 — Dry Bulb Operation With DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Below CO₂ Set</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0/v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0/v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Above CO₂ Set</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0/v/Off</td>
<td>0/v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0/v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.
Table 15 — Enthalpy Operation No DCV (CO2 Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td>NONE</td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 16 — Enthalpy Operation With DCV (CO2 Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO2 Set</td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td>Above CO2 Set</td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 17 — Dry Bulb Operation No DCV (CO2 Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td>NONE</td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.
Table 18 — Dry Bulb Operation With DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 19 — Enthalpy Operation No DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO CO₂ SENSOR</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 20 — Enthalpy Operation With DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.
ENTHALPY SETTINGS — When the OA temperature, enthalpy and dew point are below the respective setpoints, the Outdoor Air can be used for economizing. Fig. 45 shows the new single enthalpy boundaries in the W7220. There are 5 boundaries (setpoints ES1 through ES5), which are defined by dry bulb temperature, enthalpy and dew point.

Refer to Table 21 for ENTH CURVE setpoint values.

The W7220 calculates the enthalpy and dew point using the OA temperature and humidity input from the OA enthalpy sensor. When the OA temperature, OA humidity and OA dew point are all below the selected boundary, the economizer sets the economizing mode to YES, economizing is available.

When all of the OA conditions are above the selected boundary, the conditions are not good to economize and the mode is set to NO.

Fig. 45 shows the 5 current boundaries. There is also a high limit boundary for differential enthalpy. The high limit boundary is ES1 when there are no stages of mechanical cooling energized and HL (high limit) when a compressor stage is energized.

Table 21 provides the values for each boundary limit.

TWO-SPEED FAN OPERATION — The W7220 controller has the capability to work with a system using a 2-speed supply fan. The W7220 does not control the supply directly but uses the following input status to determine the speed of the supply fan and controls the OA damper to the required position, see Table 22.

The W (heating mode) is not controlled by the W7220 but it requires the status to know where to position the OA damper for minimum position for the fan speed.

The 2 speed fan delay is available when the system is programmed for 2 speed fan (in the System Setup menu item). The 2 speed fan delay is defaulted to 5 minutes and can be changed in the Advanced Setup menu item. When the unit has a call for Y1 In and in the free cooling mode and there is a call for Y2 In, the 2-speed fan delay starts and the OA damper will modulate 100% open, the supply fan should be set to high speed by the unit controller.

After the delay one of two actions will happen:
- The Y2 In call will be satisfied with the damper 100% open and fan on high speed and the call will turn off
- OR
- If the call for additional cooling in the space has not been satisfied then the first stage of mechanical cooling will be enabled through Y1 Out or Y2 Out.

CHECKOUT — Inspect all wiring connections at the economizer module’s terminals, and verify compliance with the installation wiring diagrams.

For checkout, review the Status of each configured parameter and perform the Checkout tests.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 26.
Power Up — After the W7220 module is mounted and wired, apply power.

Initial Menu Display — On initial start up, Honeywell displays on the first line and economizer W7220 on the second line. After a brief pause, the revision of the software appears on the first line and the second line will be blank.

Power Loss (Outage or Brownout) — All setpoints and advanced settings are restored after any power loss or interruption.

NOTE: All settings are stored in non-volatile flash memory.

Status — Use the Status menu (see Table 11) to check the parameter values for the various devices and sensors configured.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 26.

Checkout Tests — Use the Checkout menu (on page 31) to test the damper operation and any configured outputs. Only items that are configured are shown in the Checkout menu.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 26.

To perform a Checkout test:
1. Scroll to the desired test in the Checkout menu using the ▲ and ▼ buttons.
2. Press the ◄ button to select the item.
3. RUN? appears.
4. Press the ◄ button to start the test.
5. The unit pauses and then displays IN PROGRESS.
6. When the test is complete, DONE appears.
7. When all desired parameters have been tested, press the ◄ button to end the test. The Checkout tests can all be performed at the time of installation or at any time during the operation of the system as a test that the system is operable.

TROUBLESHOOTING

Alarms — The economizer module provides alarm messages that display on the 2-line LCD.

NOTE: Upon power up, the module waits 60 minutes before checking for alarms. This allows time for all the configured devices (e.g. sensors, actuator) to become operational. The exception is the SAT sensor which will alarm immediately.

If one or more alarms are present and there has been no keypad activity for at least 5 minutes, the Alarms menu displays and cycles through the active alarms.

You can also navigate to the Alarms menu at any time.

Clearing Alarms — Once the alarm has been identified and the cause has been removed (e.g. replaced faulty sensor) the alarm can be cleared from the display.

To clear an alarm, perform the following:
1. Navigate to the desired alarm.
2. Press the ◄ button.
3. ERASE? displays.
4. Press the ◄ button.
5. ALARM ERASED displays.
6. Press the ◄ button to complete the action and return to the previous menu.

NOTE: If the alarm still exists after you clear it, it is redisplayed within 5 seconds.

Low Ambient Control (Factory Option) — If the unit comes with Electro-Mechanical (EM) control, then no adjustment is necessary.

If the unit comes with PremierLink™ or RTU Open controller option, then refer to its installation control manual for details on adjusting “Cooling Lock-Out” setting and configure for your specific job requirements.

Staged Air Volume (SAV™) with Variable Frequency Drive (Factory Option) — For details on operating 48HC 2 stage cooling units equipped with the factory-installed Staged Air Volume option, refer to the Variable Frequency Drive (VFD) Installation, Setup and Troubleshooting Supplement.

EconoMi$er® X — Ultra Low Leak Economizer (Factory Option) — For details on operating 48HC 2 stage cooling units equipped with the factory-installed EconoMi$er X option, refer to Factory-Installed Economizers for TC/TCQ/HCQ/LC/KC/KCQ Rooftop Units, 3 to 27.5 Nominal Tons. Economizer Supplement Related to California Title 24.

ComfortLink Controls (Factory Option) — For details on operating 48HC units equipped with the factory-installed ComfortLink controls option, refer to Controls, Start-Up, Operation and Troubleshooting for 48/50HC 04-28 Single Package Rooftop Unit with ComfortLink Controls.
Fig. 46 — 48HC Control Box Component Locations with ComfortLink Controls
Fig. 47 — Typical ComfortLink Control Wiring Diagram (48HC*08/09 shown)
Fig. 48 — Typical 48HC ComfortLink Control Power Wiring Diagram with Optional Humidi-MiZer System (208/230V, 460V - 3 Ph - 60 Hz shown)
The PremierLink controller (see Fig. 49) is compatible with Carrier Comfort Network® (CCN) devices. This control is designed to allow users the access and ability to change factory-defined settings, thus expanding the function of the standard unit control board. CCN service access tools include System Pilot™, Touch Pilot™ and Service Tool. (Standard tier display tools Navigator™ and Scrolling Marquee are not suitable for use with latest PremierLink controller (Version 2.x.).)

The PremierLink controller is factory-mounted in the 48HC unit's main control box to the left of the Central Terminal Board (CTB). Factory wiring is completed through harnesses connected to the CTB thermostat. Field connections are made at a 16-pole terminal block (TB1) located on the bottom shelf of the unit control box in front of the PremierLink controller.

The factory-installed PremierLink controller includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOP/accessory EconoMi$er 2 package.

The PremierLink controller requires the use of a Carrier electronic thermostat or a CCN connection for time broadcast to initiate its internal timeclock. This is necessary for broadcast of time of day functions (occupied/unoccupied).

NOTE: PremierLink controller is shipped in Sensor mode. To be used with a thermostat, the PremierLink controller must be configured to Thermostat mode. Refer to PremierLink Configuration instructions for Operating Mode.
Fig. 51 — Typical PremierLink™ Control Wiring Diagram
Fig. 52 — Typical PremierLink Control Wiring Diagram with Humidi-MiZer® System Option
Supply Air Temperature (SAT) Sensor — On FIOP-equipped 48HC unit, the unit is supplied with a supply-air temperature (SAT) sensor (33ZCSENSAT). This sensor is a tubular probe type, approx 6-inches (152 mm) in length. It is a nominal 10k ohm thermistor.

The SAT is factory-wired. The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply air duct (as required by local codes). Drill or punch a 1/2-in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. See Fig. 53.

NOTE: Refer PremierLink Controller Installation, Start-up, and Configuration Instructions for complete PremierLink controller configuration, operating sequences and troubleshooting information. Have a copy of this manual available at unit start-up.

NOTE: The sensor must be mounted in the discharge airstream downstream of the cooling coil and any heating devices. Be sure the probe tip does not come in contact with any of the unit’s heater surfaces.

OUTDOOR AIR TEMPERATURE (OAT) SENSOR — The OAT is factory-mounted in the EconoMi$er2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring.

ECONOMISER2 — The PremierLink controller is used with EconoMi$er2 (option or accessory) for outdoor air management. The damper position is controlled directly by the PremierLink controller; EconoMi$er2 has no internal logic device.

Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO₂ sensor
- Outdoor air CO₂ sensor

Refer to Table 23 for accessory part numbers.

Field Connections — Field connections for accessory sensor and input devices are made at the 16-pole terminal block (TB1) located on the control box bottom shelf in front of the PremierLink controller (See Fig. 51 and Fig. 52). Some input devices also require a 24-vac signal source; connect at CTB terminal R at “THERMOSTAT” connection strip for this signal source. See connections figures on following pages for field connection locations (and for continued connections at the PremierLink controller board inputs).

Table 24 provides a summary of field connections for units equipped with Space Sensor. Table 25 provides a summary of field connections for units equipped with Space Thermostat.

Table 23 — PremierLink Controller Sensor Usage

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>OUTDOOR AIR TEMPERATURE SENSOR</th>
<th>RETURN AIR TEMPERATURE SENSOR</th>
<th>OUTDOOR AIR ENTHALPHY SENSOR</th>
<th>RETURN AIR ENTHALPHY SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Dry Bulb Temperature</td>
<td>Included — CRTEMPSNO01A00</td>
<td>Required — 33ZCT5SSPT or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with PremierLink (PremierLink requires</td>
<td></td>
<td>equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-20 mA Actuator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Enthalpy with PremierLink</td>
<td>Included — Not Used</td>
<td>—</td>
<td>Requires — 33CSENTHAW</td>
<td></td>
</tr>
<tr>
<td>(PremierLink requires 4-20mA Actuator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Enthalpy with</td>
<td>Included — Not Used</td>
<td>—</td>
<td>Requires — 33CSENTHAW</td>
<td>Requires — 33CSENTSEN</td>
</tr>
<tr>
<td>PremierLink (PremierLink requires 4-20mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuator)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

CO₂ Sensors (Optional):
33ZCSENSCO₂ — Room sensor (adjustable). Aspirator box is required for duct mounting of the sensor.
33ZCASPCO₂ — Aspirator box used for duct-mounted CO₂ room sensor.

33ZCT55CO₂ — Space temperature and CO₂ room sensor with override.
33ZCT56CO₂ — Space temperature and CO₂ room sensor with override and setpoint.
Table 24 — Space Sensor Mode

<table>
<thead>
<tr>
<th>TB1 TERMINAL</th>
<th>FIELD CONNECTION</th>
<th>INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T55—SEN/T56—SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>2</td>
<td>RMTOCC</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>3</td>
<td>T55—SEN/T56—SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>4</td>
<td>CMPSAFE</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>5</td>
<td>T56—SET</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>6</td>
<td>FSD</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>7</td>
<td>LOOP—PWR</td>
<td>Analog, 24VDC</td>
</tr>
<tr>
<td>8</td>
<td>SFS</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>9</td>
<td>IAQ—SEN</td>
<td>Analog, 4-20mA</td>
</tr>
<tr>
<td>10</td>
<td>FILTER</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>11</td>
<td>IAQ—COM/OAQ—COM/RH—COM</td>
<td>Analog, 4-20mA</td>
</tr>
<tr>
<td>12</td>
<td>CCN + (RED)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>13</td>
<td>OAQ—SEN/RH—SEN</td>
<td>Analog, 4-20mA</td>
</tr>
<tr>
<td>14</td>
<td>CCN Gnd (WHT)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>15</td>
<td>AUX OUT(Power Exhaust)</td>
<td>(Output)Discrete 24VAC</td>
</tr>
<tr>
<td>16</td>
<td>CCN —(BLK)</td>
<td>Digital, 5VDC</td>
</tr>
</tbody>
</table>

Legend

- **CCN** — Carrier Comfort Network® (communication bus)
- **CMPSAFE** — Compressor Safety
- **FILTER** — Filter Switch
- **FSD** — Fire Shutdown
- **IAQ** — Indoor Air Quality (CO₂)
- **OAQ** — Outdoor Air Quality (CO₂)
- **RH** — Relative Humidity
- **SFS** — Supply Fan Status
- **T55** — Space Temperature Sensor
- **T56** — Space Temperature Sensor

Table 25 — Thermostat Mode

<table>
<thead>
<tr>
<th>TB1 TERMINAL</th>
<th>FIELD CONNECTION</th>
<th>INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAT SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>3</td>
<td>RAT SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>4</td>
<td>Y1</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Y2</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>7</td>
<td>LOOP—PWR</td>
<td>Analog, 24VDC</td>
</tr>
<tr>
<td>8</td>
<td>W1</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>9</td>
<td>IAQ—SEN</td>
<td>Analog, 4-20mA</td>
</tr>
<tr>
<td>10</td>
<td>W2</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>11</td>
<td>IAQ—COM/OAQ—COM/RH—COM</td>
<td>Analog, 4-20mA</td>
</tr>
<tr>
<td>12</td>
<td>CCN + (RED)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>13</td>
<td>OAQ—SEN/RH—SEN</td>
<td>Analog, 4-20mA</td>
</tr>
<tr>
<td>14</td>
<td>CCN Gnd (WHT)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>15</td>
<td>AUX OUT (Power Exhaust)</td>
<td>(Output)Discrete 24VAC</td>
</tr>
<tr>
<td>16</td>
<td>CCN —(BLK)</td>
<td>Digital, 5VDC</td>
</tr>
</tbody>
</table>

Legend

- **CCN** — Carrier Comfort Network (communication bus)
- **G** — Thermostat Fan
- **IAQ** — Indoor Air Quality (CO₂)
- **OAQ** — Outdoor Air Quality (CO₂)
- **RAT** — Return Air Temperature
- **RH** — Relative Humidity
- **W1** — Thermostat Heat Stage 1
- **W2** — Thermostat Heat Stage 2
- **Y1** — Thermostat Cool Stage 1
- **Y2** — Thermostat Cool Stage 2
SPACE SENSORS — The PremierLink controller is factory-shipped configured for Space Sensor Mode. A Carrier T-55 or T-56 space sensor must be used. T-55 space temperature sensor provides a signal of space temperature to the PremierLink controller. T-56 provides same space temperature signal plus it allows for adjustment of space temperature setpoints from the face of the sensor by the occupants.

Fig. 54 — T-55 Space Temperature Sensor Wiring

Connect T-55 — See Fig. 54 for typical T-55 internal connections. Connect the T-55 SEN terminals to TB1 terminals 1 and 3 (see Fig. 55).

Fig. 55 — PremierLink Controller T-55 Sensor

Connect T-56 — See Fig. 56 for T-56 internal connections. Install a jumper between SEN and SET terminals as illustrated. Connect T-56 terminals to TB1 terminals 1, 3 and 5 (see Fig. 57).

Fig. 56 — T-56 Internal Connections

CONNECT THERMOSTAT — A 7-wire thermostat connection requires a 24-v power source and a common connection. Use the R and C terminals on the CTBT’s THERMOSTAT connection strip for these. Connect the thermostat’s Y1, Y2, W1, W2 and G terminals to PremierLink TB1 as shown in Fig. 58.

If the 48HC unit is equipped with factory-installed smoke detector(s), disconnect the factory BLU lead at TB1-6 (Y2) before connecting the thermostat. Identify the BLU lead originating at CTB-DDC-1; disconnect at TB1-6 and tape off. Confirm that the second BLU lead at TB1-6 remains connected to PremierLink J4-8.
If the 48HC unit has an economizer system and free-cooling operation is required, a sensor representing Return Air Temperature must also be connected (field-supplied and installed). This sensor may be a T-55 Space Sensor (see Fig. 54) installed in the space or in the return duct, or it may be sensor P/N 33ZCSENSAT, installed in the return duct. Connect this sensor to TB1-1 and TB1-3 per Fig. 55.

CONFIGURE THE UNIT FOR THERMOSTAT MODE — Connect to the CCN bus using a CCN service tool and navigate to PremierLink Configuration screen for Operating Mode. Default setting is Sensor Mode (value 1). Change the value to 0 to reconfigure the controller for Thermostat Mode.

When the PremierLink controller is configured for Thermostat Mode, these functions are not available: Fire Shutdown (FSD), Remote Occupied (RMT OCC), Compressor Safety (CMPSAFE), Supply Fan Status (SFS), and Filter Pressure Switch (FILTER).

Economizer Controls

INDOOR AIR QUALITY (CO₂) SENSOR — The indoor air quality sensor accessory monitors space carbon dioxide (CO₂) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO₂ present in the space air.

The CO₂ sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO₂ sensor for electrical requirements and terminal locations. See Fig. 59 for typical CO₂ sensor wiring schematic.

Fig. 58 — Space Thermostat Connections

Fig. 59 — Indoor/Outdoor Air Quality (CO₂) Sensor (33ZCSENCO2) — Typical Wiring Diagram

To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO₂ leaving the space. The sensor should be mounted in a location to avoid direct breath contact.

Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

Wiring the Indoor Air Quality Sensor — For each sensor, use two 2-conductor 18 AWG (American Wire Gage) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. See Fig. 59. Connect the 4-20 mA terminal to terminal TB1-9 and connect the SIG COM terminal to terminal TB1-11. See Fig. 60.

Fig. 60 — Indoor CO₂ Sensor (33ZCSENCO2) Connections

Refer to PremierLink Controller Installation, Start-up, and Configuration Instructions, for detailed configuration information.

OUTDOOR AIR QUALITY SENSOR (P/N 33ZCSENCO2 PLUS WEATHERPROOF ENCLOSURE) — The outdoor air CO₂ sensor is designed to monitor carbon dioxide (CO₂) levels in the outside ventilation air and interface with the
ventilation damper in an HVAC system. The OAQ sensor is packaged with an outdoor cover. See Fig. 61. The outdoor air CO₂ sensor must be located in the economizer outside air hood.

Fig. 61 — Outdoor Air Quality Sensor Cover

Wiring the Outdoor Air CO₂ Sensor — A dedicated power supply is required for this sensor. A two-wire cable is required to wire the dedicated power supply for the sensor. The two wires should be connected to the power supply and terminals 1 and 2.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the OAQ sensor. See Fig. 59. Connect the 4 to 20 mA terminal to the TB1-13 terminal of the 48HC. Connect the SIG COM terminal to the TB1-11 terminal of the 48HC. See Fig. 62.

Fig. 62 — Outdoor CO₂ Sensor Connections

Space Relative Humidity Sensor connections — The accessory space relative humidity sensor (33ZCSENSRH-01) is installed on an interior wall to measure the relative humidity of the air within the occupied space.

The use of a standard 2 X 4 inch electrical box to accommodate the wiring is recommended for installation. The sensor can be mounted directly on the wall, if acceptable by local codes.

Fig. 63 — Space Relative Humidity Sensor Installation

The sensor must be mounted vertically on the wall. The Carrier logo should be orientated correctly when the sensor is properly mounted.

Avoid corner locations. Allow at least 4 ft between the sensor and any corner. Airflow near corners tends to be reduced, resulting in erratic sensor readings. The sensor should be vertically mounted approximately 5 ft up from the floor, beside the space temperature sensor.

For wiring distances up to 500 feet, use a 3-conductor, 18 or 20 AWG cable. A CCN communication cable can be used, although the shield is not required. The shield must be removed from the sensor end of the cable if this cable is used. See Fig. 64 for wiring details.

UNIT DAMAGE HAZARD

Failure to follow this caution may result in permanent damage to the sensor.

DO NOT clean or touch the sensing element with chemical solvents as they can permanently damage the sensor.

IMPORTANT: DO NOT mount the sensor in drafty areas such as near heating or air-conditioning ducts, open windows, fans, or over heat sources such as baseboard heaters, radiators, or wall-mounted dimmers. Sensors mounted in those areas will produce inaccurate readings.

If the sensor is installed directly on a wall, install the humidity sensor using 2 screws and 2 hollow wall anchors (field supplied). Do not over tighten screws. See Fig. 63.
Fig. 64 — Space Relative Humidity Sensor Connection

The power for the sensor is provided by the PremierLink controller on terminal J5-4 (+33 to +35vdc).

To wire the sensor:

1. At the sensor, remove 4 inches of the jacket from the cable. Strip 1/4 inch of insulation from each conductor. Route the cable through the wire clearance opening in the center of the sensor. See Fig. 63.

2. Connect a field-supplied BLACK wire to the sensor screw terminal marked Vin.

3. Connect a field-supplied RED wire into the sensor screw terminal marked Io.

4. Connect the field-supplied RED wire from the sensor to TB1-13.

5. Connect the field-supplied BLACK wire from the sensor to TB1-7.

SMOKE DETECTOR/FIRE SHUTDOWN (FSD) — This function is available only when the PremierLink controller is configured for (Space) Sensor Mode. The unit is factory-wired for PremierLink FSD operation when the PremierLink controller is factory-installed.

On 48HC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s CTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The PremierLink controller communicates the smoke detector’s tripped status to the CCN building control. See Fig. 51 and Fig. 52, typical PremierLink controller wiring diagrams.

FILTER STATUS SWITCH — This function is available only when the PremierLink controller is configured for (Space) Sensor Mode. The PremierLink controller can monitor return filter status in two ways: By monitoring a field-supplied/installed filter pressure switch or via supply fan runtime hours.

Using switch input: Install the dirty filter pressure switch according to switch manufacturer’s instructions, to measure pressure drop across the unit’s return filters. Connect one side of the switch’s NO contact set to CTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-10. Setpoint for Dirty Filter is set at the switch. See Fig. 65.

Fig. 65 — PremierLink Controller Filter Switch Connection

When the filter switch’s NO contact set closes as filter pressure drop increases (indicating dirt-laden filters), the input signal to the PremierLink controller causes the filter status point to read “DIRTY.”

Using Filter Timer Hours — Refer to the PremierLink Controller Installation, Start-up, and Configuration Instructions for instructions on using the PremierLink Configuration screens and on unit alarm sequence.

SUPPLY FAN STATUS SWITCH — The PremierLink controller can monitor supply fan operation through a field-supplied/installed differential pressure switch. This sequence will prevent (or interrupt) operation of unit cooling, heating and economizer functions until the pressure switch contacts are closed indicating proper supply fan operation.

Install the differential pressure switch in the supply fan section according to switch manufacturer’s instructions. Arrange the switch contact to be open on no flow and to close as pressure rises indicating fan operation.

Connect one side of the switch’s NO contact set to CTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-8. Setpoint for Supply Fan Status is set at the switch. See Fig. 66.

Fan (Pressure) Switch (NO, close on rise in pressure)

Fig. 66 — PremierLink Controller Wiring Fan Pressure Switch Connection

REMOTE OCCUPIED SWITCH — The PremierLink controller permits a remote timeclock to override the control’s on-board occupancy schedule and place the unit into Occupied mode. This function may also provide a “Door Switch” time delay function that will terminate cooling and heating functions after a 2 to 20 minute delay.

Connect one side of the NO contact set on the timeclock to CTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-2 terminal (see Fig. 67).

Remote Occupied

Fig. 67 — PremierLink Controller Wiring Remote Occupied
Refer to the PremierLink Controller Installation, Start-up, and Configuration Instructions for additional information on configuring the PremierLink controller for Door Switch timer function.

POWER EXHAUST (OUTPUT) — Connect the accessory Power Exhaust contactor coil(s) per Fig. 68.

Power Exhaust

![Diagram of Power Exhaust connections](image)

Fig. 68 — PremierLink Controller Power Exhaust Output Connection

NOTE: The Power Exhaust and Humidi-MiZer® system options cannot be used with PremierLink™ controls at the same time as both options require connection at TB1-15 (AUX OUT).

CCN COMMUNICATION BUS — The PremierLink controller connects to the bus in a daisy chain arrangement. Negative pins on each component must be connected to respective negative pins, and likewise, positive pins on each component must be connected to respective positive pins. The controller signal pins must be wired to the signal ground pins. Wiring connections for CCN must be made at the 3-pin plug.

At any baud (9600, 19200, 38400 baud), the number of controllers is limited to 239 devices maximum. Bus length may not exceed 4000 ft, with no more than 60 total devices on any 1000-ft section. Optically isolated RS-485 repeaters are required every 1000 ft.

NOTE: Carrier device default is 9600 baud.

Communications Bus Wire Specifications — The CCN Communication Bus wiring is field-supplied and field-installed. It consists of shielded 3-conductor cable with drain (ground) wire. The cable selected must be identical to the CCN Communication Bus wire used for the entire network.

See Table 26 for recommended cable.

<table>
<thead>
<tr>
<th>SIGNAL TYPE</th>
<th>CCN BUS WIRE COLOR</th>
<th>CCN PLUG PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Red</td>
<td>1</td>
</tr>
<tr>
<td>GROUND</td>
<td>White</td>
<td>2</td>
</tr>
<tr>
<td>–</td>
<td>Black</td>
<td>3</td>
</tr>
</tbody>
</table>

Connect the CCN (+) lead (typically RED) to the unit’s TB1-12 terminal. Connect the CCN (ground) lead (typically WHT) to the unit’s TB1-14 terminal. Connect the CCN (–) lead (typically BLK) to the unit’s TB1-16 terminal. See Fig. 69.

RTU Open Controller System — The RTU Open controller is factory-mounted in the 48HC unit’s main control box (see Fig. 71), to the left of the CTB. Factory wiring is completed through harnesses connected to the CTB. Field-connections for RTU Open controller sensors will be made at the Phoenix connectors on the RTU Open board. The factory-installed RTU Open controller includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOP/accessory EconoMi$er2 package.

The RTU Open controller is an integrated component of the Carrier rooftop unit. Its internal application programming provides optimum performance and energy efficiency. RTU Open enables the unit to run in 100% stand-alone control mode, Carrier’s i-Vu® Open network, or a Third Party Building Automation System (BAS). On-board DIP switches allow you to select your protocol (and baud rate) of choice among the four most popular protocols in use today: BACnet®, Modbus†, Johnson N2 and LonWorks**. (See Fig. 70.)

Refer to Table 28, RTU Open Controller Inputs and Outputs for locations of all connections to the RTU Open controller board.

* BACnet is a registered trademark of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers).
† Modbus is a registered trademark of Schneider Electric.
** LonWorks is a registered trademark of Echelon Corporation.
Fig. 70 — RTU Open Multi-Protocol Controller Board
Fig. 71 — Typical RTU Open Controller Wiring Diagram
Fig. 72 — Typical RTU Open Controller Wiring Diagram with Humidi-MiZer® System Option
Table 28 — RTU Open Controller Inputs and Outputs

<table>
<thead>
<tr>
<th>POINT NAME</th>
<th>BACNET OBJECT NAME</th>
<th>TYPE OF I/O</th>
<th>CONNECTION PIN NUMBER(S)</th>
<th>CHANNEL DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATED INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Temp / Zone Temp</td>
<td>zone_temp</td>
<td>AI (10K Thermistor)</td>
<td>J20—1 & 2</td>
<td>Analog Input 10</td>
</tr>
<tr>
<td>Supply Air Temperature</td>
<td>sa_temp</td>
<td>AI (10K Thermistor)</td>
<td>J2—1 & 2</td>
<td>Analog Input 6</td>
</tr>
<tr>
<td>Outside Air Temperature</td>
<td>oa_temp</td>
<td>AI (10K Thermistor)</td>
<td>J2—3 & 4</td>
<td>Analog Input 7</td>
</tr>
<tr>
<td>Space Temperature Offset Pot</td>
<td>sppt_adj_offset</td>
<td>AI (100K Potentiometer)</td>
<td>J20—3 & 4</td>
<td>Analog Input 11</td>
</tr>
<tr>
<td>Safety Chain Feedback</td>
<td>safety_status</td>
<td>BI (24 VAC)</td>
<td>J1—9</td>
<td>Binary Input 4</td>
</tr>
<tr>
<td>Compressor Safety Status</td>
<td>comp_status</td>
<td>BI (24 VAC)</td>
<td>J1—2</td>
<td>Binary Input 3</td>
</tr>
<tr>
<td>Fire Shutdown Status</td>
<td>firedown_status</td>
<td>BI (24 VAC)</td>
<td>J1—10</td>
<td>Binary Input 5</td>
</tr>
<tr>
<td>Enthalpy Status</td>
<td>enthalpy_status</td>
<td>BI (24 VAC)</td>
<td>J2—6 & 7</td>
<td>Binary Input 8</td>
</tr>
<tr>
<td>Humidistat Input Status</td>
<td>humstat_status</td>
<td>BI (24 VAC)</td>
<td>J5—7 & 8</td>
<td>Binary Input 9</td>
</tr>
<tr>
<td>Zone Temperature</td>
<td>N/A</td>
<td>N/A</td>
<td>J13—1 & 4</td>
<td>Combo Input 4</td>
</tr>
<tr>
<td>CONFIGURABLE INPUTS (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Air CO₂</td>
<td>iaq</td>
<td>AI (4-20 mA)</td>
<td>J4—2 & 3 or J4—5 & 6</td>
<td>Analog Input 2</td>
</tr>
<tr>
<td>Outdoor Air CO₂</td>
<td>oaq</td>
<td>AI (4-20 mA)</td>
<td>J4—2 & 3 or J4—5 & 6</td>
<td>Analog Input 1</td>
</tr>
<tr>
<td>Space Relative Humidity</td>
<td>space_rh</td>
<td>AI (4-20 mA)</td>
<td>J4—2 & 3 or J4—5 & 6</td>
<td>Analog Input 10</td>
</tr>
<tr>
<td>Supply Fan Status (2)</td>
<td>sfan_status</td>
<td>BI (24 VAC)</td>
<td>J5—1 & 2 or J5—3 & 4</td>
<td>Binary Input 3, 5, 8, 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>Filter Status (2)</td>
<td>filter_status</td>
<td>BI (24 VAC)</td>
<td>J5—1 & 2 or J5—3 & 4</td>
<td>Binary Input 3, 5, 8, 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>Door Contact (2)</td>
<td>door_contact_status</td>
<td>BI (24 VAC)</td>
<td>J5—1 & 2 or J5—3 & 4</td>
<td>Binary Input 3, 5, 8, 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>Remote Occupancy input (2)</td>
<td>occ_contact_status</td>
<td>BI (24 VAC)</td>
<td>J5—1 & 2 or J5—3 & 4</td>
<td>Binary Input 3, 5, 8, 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>IGC input (2)</td>
<td>igcovr_status</td>
<td>BI (24 VAC)</td>
<td>J5—1 & 2 or J5—3 & 4</td>
<td>Binary Input 3, 5, 8, 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>OUTPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EconoMiser Output</td>
<td>econ_output</td>
<td>AO (4-0mA)</td>
<td>J2—5</td>
<td>Analog Output 1</td>
</tr>
<tr>
<td>Supply Fan VFD</td>
<td>vfd_output</td>
<td>AO (2-10Vdc)</td>
<td>J2—5</td>
<td>Analog Output 2</td>
</tr>
<tr>
<td>Supply Fan Relay</td>
<td>sfan</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1—4</td>
<td>Binary Output 1 (G)</td>
</tr>
<tr>
<td>Cool 1 Relay State</td>
<td>comp_1</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1—8</td>
<td>Binary Output 5 (Y1)</td>
</tr>
<tr>
<td>Cool 2 Relay State</td>
<td>comp_2</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1—7</td>
<td>Binary Output 4 (Y2)</td>
</tr>
<tr>
<td>Cool 3 Relay State</td>
<td>comp_3</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J11—5 & 6</td>
<td>Binary Output 7 (Y3)</td>
</tr>
<tr>
<td>Heat 1 Relay State</td>
<td>heat_1</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1—6</td>
<td>Binary Output 3 (W1)</td>
</tr>
<tr>
<td>Heat 2 Relay State</td>
<td>heat_2</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1—5</td>
<td>Binary Output 2 (W2)</td>
</tr>
<tr>
<td>Power Exhaust Relay State</td>
<td>pexh</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J11—2 & 3 (N.O.)</td>
<td>Binary Output 8 (PE)</td>
</tr>
<tr>
<td>Dehumidification Relay</td>
<td>dehum</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J11—7 & 8 (N.O.)</td>
<td>Binary Output 6</td>
</tr>
</tbody>
</table>

LEGEND

- **AI** — Analog Input
- **AO** — Analog Output
- **BI** — Binary Input
- **BO** — Binary Output

(1) Safety Chain Feedback: 24Vac required at this terminal to provide “Run Enable” status. See Input/Output section for additional instructions.

(2) These inputs are configurable. If installed, they take the place of the default input on the specific channel. See appropriate Input Configuration Section for wiring and setup instructions.

(3) Parallel pins J5—1 = J2—6, J5—3 = J1—10, J5—5 = J1—2 are used for field installation.

(4) Refer to the input configuration and accessory sections of the RTU Open Multi-Protocol Controller Controls, Start-Up, Operation and Troubleshooting manual for more detail.

The RTU Open controller requires the use of a Carrier space sensor. A standard thermostat cannot be used with the RTU Open system.

SUPPLY AIR TEMPERATURE (SAT) SENSOR — On FIOP-equipped 48HC unit, the unit is supplied with a supply-air temperature (SAT) sensor (33ZCSENSAT). This sensor is a tubular probe type, approx 6-inches (152 mm) in length. It is a nominal 10k ohm thermistor.

The SAT is factory-wired. The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply-air duct (as required by local codes). Drill or punch a 1/2-in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. See Fig. 53.

OUTDOOR AIR TEMPERATURE (OAT) SENSOR — The OAT is factory-mounted in the EconoMiser® 2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring.

ECONOMISER 2 — The RTU Open controller is used with EconoMiser 2 (factory-installed option or field-installed accessory) for outdoor air management. The damper position is controlled directly by the RTU Open controller; EconoMiser 2 has no internal logic device.
Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO₂ sensor
- Outdoor air CO₂ sensor

Field Connections — Field connections for accessory sensors and input devices are made to the RTU Open controller, at plugs J1, J2, J4, J5, J11 and J20. All field control wiring that connects to the RTU Open controller must be routed through the raceway built into the corner post as shown in Fig. 35. The raceway provides the UL required clearance between high and low-voltage wiring. Pass the control wires through the hole provided in the corner post, then feed the wires through the raceway to the RTU Open controller. Connect to the wires to the removable Phoenix connectors and then reconnect the connectors to the board.

SPACE TEMPERATURE (SPT) SENSORS — There are two types of SPT sensors available from Carrier, resistive input non-communicating (T55, T56, and T59) and Rnet communicating (SPS, SPPL, SPP, and SPPF) sensors. Each type has a variety of options consisting of: timed override button, set point adjustment, a LCD screen, and communication tie in. Space temperature can be also be written to from a building network or zoning system. However, it is still recommended that return air duct sensor be installed to allow stand-alone operation for back-up. Refer to the configuration section for details on controller configurations associated with space sensors.

- 33ZCT55SPT, space temperature sensor with override button (T-55)
- 33ZCT56SPT, space temperature sensor with override button and setpoint adjustment (T-56)
- 33ZCT59SPT, space temperature sensor with LCD (liquid crystal display) screen, override button, and setpoint adjustment (T-59)

Use 20 gauge wire to connect the sensor to the controller. The wire is suitable for distances of up to 500 ft. Use a three-conductor shielded cable for the sensor and setpoint adjustment connections. If the setpoint adjustment (slidebar) is not required, then an unshielded, 18 or 20 gauge, two-conductor, twisted pair cable may be used.

Connect T-55 — See Fig. 54 for typical T-55 internal connections. Connect the T-55 SEN terminals to the RTU Open controller at J20-1 and J20-2. See Fig. 73.

INDOOR AIR QUALITY (CO₂) SENSOR — The indoor air quality sensor accessory monitors space carbon dioxide (CO₂) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO₂ present in the space air.

The CO₂ sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO₂ sensor for electrical requirements and terminal locations. See Fig. 59 for typical CO₂ sensor wiring schematic.

To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO₂ leaving the space. The sensor should be mounted in a location to avoid direct breath contact.
Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

Fig. 76 — Indoor/Outdoor Air Quality (CO₂) Sensor (33ZCSPTCO2-01 or 33ZCSPTCO2LCD-01) Typical Wiring Diagram

Wiring the Indoor Air Quality Sensor: For each sensor, use two 2-conductor 18 AWG (American Wire Gage) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. See Fig. 76. Connect the 4 to 20 mA terminal to the RTU Open controller at J4-2 and connect the SIG COM terminal to the RTU Open controller at J4-3. See Fig. 77.

OAQ Sensor

Fig. 78 — RTU Open Controller/Outdoor CO₂ Sensor (33ZCSPTCO2-01 or 33ZCSPTCO2LCD-01) Connections

SPACE RELATIVE HUMIDITY SENSOR OR HUMIDISTAT

Humidi-MiZer® System Control Wiring — In units equipped with the Humidi-MiZer option there are two loose wires loose in the control box (one PNK and one PNK/BLK) used to control the dehumidification function of the unit. These wires are meant to be tied to a space humidistat or thermidistat on an electromechanical unit. On RTU Open controller equipped units these wires must be connected to J11-7 and 8 to allow the Open board to operate the dehumidification function for the unit. Disconnect the J11 Phoenix style connector from the board and use the plug screws to secure the wires as follows: secure the PNK/BLK wires at pin 7 and the PNK wires at pin 8, and then reconnect the plug to the board at J11.

Relative Humidity Sensors (Space or Duct Mounted) — The accessory space humidity sensor (33ZCSENSRH-01) or duct humidity sensor (33ZCSENDRH-01) is used to measure the relative humidity of air within the space or return air duct. The RH reading is used to control the Humidi-MiZer option of the rooftop unit. For wiring distances up to 500 ft (152 m), use a 3-conductor, 18 or 20 AWG shielded cable. The shield must be removed from the sensor end of the cable and grounded at the unit end. The current loop power for sensor is provided by the RTU Open controller as 24vdc. Refer to the instructions supplied with the RH sensor for the electrical requirements and terminal locations. RTU Open controller configurations must be changed after adding an RH sensor. See Fig. 79 and 80 for typical RH sensor wiring.

• J4—1 or J4—4 = 24vdc loop power
• J4—2 or J4—5 = 4-20mA signal input

NOTE: The factory default for dehumidification control is normally open humidistat.
Humidistat — The accessory humidistat provides the RTU Open controller insight to the relative humidity in the space. The humidistat reads the RH level in the space and compares it to its setpoint to operate a dry contact. The humidistat is a dedicated input on the configurable input 9 and tells the RTU Open controller when the RH level is high or low. The normal condition for humidity is low. A normally open humidistat is the factory default control for the Humidi-MiZer system operation.

To wire in the field:
- J5–8 = 24 VAC source for dry contact
- J5–7 = Signal input

SMOKE DETECTOR/FIRE SHUTDOWN (FSD) — On 48HC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s CTB input. The FSD function is initiated via the smoke detector’s alarm NO contact set. The RTU Open controller communicates the smoke detector’s tripped status to the BAS building control. See Fig. 71 and 72, (RTU Open Controller wiring diagrams).

The Fire Shutdown switch configuration, MENU → Config → Inputs → input 5, identifies the normally open status of this input when there is no fire alarm.

CONNECTING DISCRETE INPUTS — Filter Status: The filter status accessory is a field-installed accessory. This accessory detects plugged filters. When installing this accessory, the unit must be configured for filter status by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Filter Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for ease of installation. Refer to Fig. 70 and Fig. 71 or 72 for wire terminations at J5.

Fan Status — The fan status accessory is a field-installed accessory. This accessory detects when the indoor fan is blowing air. When installing this accessory, the unit must be configured for fan status by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Fan Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for ease of installation. Refer to Fig. 70 and Fig. 71 or 72 for wire terminations at J5.

Remote Occupancy — The remote occupancy accessory is a field-installed accessory. This accessory overrides the unoccupied mode and puts the unit in occupied mode. When installing this accessory, the unit must be configured for remote occupancy by setting MENU → Config → Inputs → input 3, 5, 8, or 9 to Remote Occupancy and normally open (N/O) or normally closed (N/C).

Also set MENU → Schedules → occupancy source to DI on/off. Input 8 or 9 is recommended for ease of installation. Refer to Fig. 70 and Table 28 for wire terminations at J5.

Power Exhaust (output) — The relay used by the RTU Open controller board to control power exhaust is a dry contact which means it does not have 24vac. This 24vac must be connected to the relay to allow it to operate the power exhaust relay in the PE accessory. A 24vac source must be provided to J11—2 on the RTU Open controller board. This can be provided by the unit’s transformer from various sources. The “R” terminal on the unit’s central terminal board (CTB) is a logical source. Refer to Fig. 70 and Fig. 71 or 72 for wire terminations at J11.

Communication Wiring — Protocols

GENERAL — Protocols are the communication languages spoken by control devices. The main purpose of a protocol is to communicate information in the most efficient method possible. Different protocols exist to provide different kinds of information for different applications. In the BAS application, many different protocols are used, depending on manufacturer. Protocols do not change the function of a controller; just make the front end user different.

The RTU Open controller can be set to communicate on four different protocols: BACnet, Modbus, N2, and LonWorks. Switch 3 (SW3) on the board is used to set protocol and baud rate. Switches 1 and 2 (SW1 and SW2) are used to set the board’s network address. See Fig. 81 and 82 for protocol switch settings and address switches. The third party connection to the RTU Open controller is through plug J19. See Fig. 83 for wiring.

NOTE: Power must be cycled after changing the SW1–3 switch settings.

Refer to the RTU Open Controller Integration Guide for more detailed information on protocols, third party wiring, and networking.
SW3 Protocol Selection

<table>
<thead>
<tr>
<th>PROTOCOL</th>
<th>DS8</th>
<th>DS7</th>
<th>DS6</th>
<th>DS5</th>
<th>DS4</th>
<th>DS3</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP (Master)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
<td>Select Baud</td>
</tr>
<tr>
<td>Modbus (Slave)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
<td>Select Baud</td>
</tr>
<tr>
<td>N2 (Slave)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>LonWorks</td>
<td>Unused</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

NOTE: Refer to the RTU Open Multi-Protocol Controller Controls, Start-Up, Operation and Troubleshooting manual for complete configuration of the RTU Open controller, operating sequences and troubleshooting information. Refer to the RTU Open v3 Integration Guide for details on configuration and troubleshooting of connected networks. Have a copy of these manuals available at unit start-up.

Baud Rate Selections

<table>
<thead>
<tr>
<th>BAUD RATE</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>19,200</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>38,400</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>76,800</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

Fig. 81 — RTU Open Controller SW3 Dip Switch Settings

Local Access

WALL MOUNTED EQUIPMENT TOUCH INTERFACE — The Equipment Touch interface is a wall mounted interface used to connect to the RTU Open controller to access the control information, read sensor values, and maintenance. This is an accessory interface that does not come with the RTU Open controller. You wire the Equipment Touch interface to the RTU Open controller’s J13 local access port. There are 2 password protected levels in the display (User and Admin). See the Equipment Touch Installation and Setup Guide for more information. See Appendix A for navigation and screen content.

FIELD ASSISTANT — Field Assistant is a computer program included with the purchase of the Tech Tool Kit (USB-TKIT). This is a field Tech Tool to set-up, service, or download application software to the RTU Open controller and includes a USB Link Cable. The link cable connects a USB port to the J12 local access port. The Field Assistant’s menu structure is similar and functions the same as i-Vu controller. See Fig. 84.

RTU OPEN CONTROLLER TROUBLESHOOTING

Communication LEDs — The LEDs indicate if the controller is speaking to the devices on the network. The LEDs should reflect communication traffic based on the baud rate set. The higher the baud rate the more solid the LEDs will appear. See Table 29.

NOTE: Refer to the RTU Open Multi-Protocol Controller Controls, Start-Up, Operation and Troubleshooting manual for complete configuration of the RTU Open controller, operating sequences and troubleshooting information. Refer to the RTU Open v3 Integration Guide for details on configuration and troubleshooting of connected networks. Have a copy of these manuals available at unit start-up.
Outdoor Air Enthalpy Control (P/N 33CSENTHSW) — The enthalpy control (33CSENTHSW) is available as a field-installed accessory to be used with the EconoMi$er®2 damper system. The outdoor air enthalpy sensor is part of the enthalpy control. (The separate field-installed accessory return air enthalpy sensor (33CSENT-SEN) is required for differential enthalpy control. See Fig. 85.)

Locate the enthalpy control in the economizer next to the Actuator Motor. Locate two GRA leads in the factory harness and connect the gray lead labeled “ESL” to the terminal labeled “LOW.” See Fig. 85. Connect the enthalpy control power input terminals to economizer actuator power leads RED (connect to 24V) and BLK (connect to GND).

The outdoor enthalpy changeover setpoint is set at the enthalpy controller.

Table 29 — LEDs

<table>
<thead>
<tr>
<th>If this LED is on...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>The RTU Open controller has power</td>
</tr>
<tr>
<td>Rx</td>
<td>The RTU Open controller is receiving data from the network segment</td>
</tr>
<tr>
<td>Tx</td>
<td>The RTU Open controller is transmitting data over the network segment</td>
</tr>
<tr>
<td>BO#</td>
<td>The binary output is active</td>
</tr>
</tbody>
</table>

The Run and Error LEDs indicate control module and network status

<table>
<thead>
<tr>
<th>If Run LED shows...</th>
<th>And Error LED shows...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 flashes per second</td>
<td>Off</td>
<td>Normal</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>2 flashes, alternating with Run LED</td>
<td>Five minute auto-restart delay after system error</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>3 flashes, then off</td>
<td>Control module has just been formatted</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>4 flashes, then pause</td>
<td>Two or more devices on this network have the same MSTP network address</td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>On</td>
<td>Exec halted after frequent system errors or control programs halted</td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>On</td>
<td>Exec start-up aborted, Boot is running</td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>Off</td>
<td>Firmware transfer in progress, Boot is running</td>
</tr>
<tr>
<td>7 flashes per second</td>
<td>7 flashes per second, alternating with Run LED</td>
<td>Ten second recovery period after brownout</td>
</tr>
<tr>
<td>14 flashes per second</td>
<td>14 flashes per second, alternating with Run LED</td>
<td>Brownout</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Failure. Try the following solutions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Turn the RTU Open controller off, then on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Format the RTU Open controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Download memory to the RTU Open controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Replace the RTU Open controller.</td>
</tr>
</tbody>
</table>

Fig. 84 — PC Running Field Assistant

Fig. 85 — Enthalpy Switch (33CSENTHSW) Connections
DIFFERENTIAL ENTHALPY CONTROL — Differential enthalpy control is provided by sensing and comparing the outside air and return air enthalpy conditions. Install the outdoor air enthalpy control as described above. Add and install a return air enthalpy sensor.

RETURN AIR ENTHALPY SENSOR — Mount the return-air enthalpy sensor (33CSENTSEN) in the return-air section of the economizer. The return air sensor is wired to the enthalpy controller (33CSENTHSW). See Fig. 86.

RETURN AIR SMOKE DETECTOR — Smoke detectors are available as factory-installed options on 48HC models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

Units equipped with factory-option Return Air smoke detectors require a relocation of the sensor module at unit installation. See Fig. 87 for the as shipped location.

Completing Installation of Return Air Smoke Sensor:
1. Unscrew the two screws holding the Return Air Smoke Detector assembly. See Fig. 88, Step 1. Save the screws.
2. Turn the assembly 90° and then rotate end to end. Make sure that the elbow fitting is pointing down. See Fig. 88, Step 2.
3. Screw the sensor and detector plate into its operating position using screws from Step 1. See Fig. 88, Step 3.
4. Connect the flexible tube on the sampling inlet to the sampling tube on the basepan.

ADDITIONAL APPLICATION DATA — Refer to the Application Data sheet titled Factory Installed Smoke Detectors for Small and Medium Rooftop Units 2 to 25 Tons for discussions on additional control features of these smoke detectors including multiple unit coordination.
Step 12 — Adjust Factory-Installed Options

SMOKE DETECTORS — Smoke detector(s) will be connected at the Controls Connections Board, at terminals marked “Smoke Shutdown.” Cut jumper JMP 3 when ready to energize unit.

ECONOMISER IV OCCUPANCY SWITCH — Refer to Fig. 89 for general EconoMiSer IV wiring. External occupancy control is managed through a connection on the Controls Connections Board.

If external occupancy control is desired, connect a time clock or remotely controlled switch (closed for Occupied, open for Unoccupied sequence) at terminals marked OCCUPANCY. Cut jumper JMP 2 to complete the installation.

Step 13 — Install Accessories — Available accessories include:
- Roof Curb
- Thru-base connection kit (must be installed before unit is set on curb)
- LP conversion kit
- Flue discharge deflector
- Manual outside air damper
- Two-Position motorized outside air damper
- EconoMiSer IV (with control)
- EconoMiSer2 (without control/for external signal)
- Power Exhaust
- Differential dry-bulb sensor (EconoMiSer IV)
- Outdoor enthalpy sensor
- Differential enthalpy sensor
- CO₂ sensor
- DDC interface (PremierLink controller)
- Louvered hail guard
- Motormaster® head pressure controls
- Phase monitor control
- Energy Recovery Ventilator (ERV)

Refer to separate installation instructions for information on installing these accessories.

Step 14 — Check Belt Tension — Measure the belt span length as shown in Fig. 90. Calculate the required deflection by multiplying the belt span length by 1/64. For example, if the belt span length is 32 inches: 32 x 1/64 = 1/2 inch deflection.

BELT FORCE — DEFLECTION METHOD — Check the belt tension with a spring-force belt force deflection gauge (available from drive belt manufacturer).

1. Place a straightedge along the belt between the two pulleys. Measure the distance between the motor shaft and the blower shaft.
2. Set the tension gauge to the desired tension (see Table 1 in Fig. 90). Place the large O-ring at that point.
3. Press the tension checker downward on the belt until the large O-ring is at the bottom of the straightedge.
4. Adjust the belt tension as needed.

Adjust belt tension by loosening the motor mounting plate front bolts and rear bolt (see Fig. 91) and slide the plate towards the fan (to reduce tension) or away from the fan (to increase tension). Ensure the blower shaft and motor shaft are parallel to each other (pulleys aligned). Tighten all bolts securely when finished.
BELT TENSION METHOD — Requires belt tension gauge that measures tension in belt in units of lbs force.

Table 1

<table>
<thead>
<tr>
<th>BELT CROSS SECTION</th>
<th>SMALLEST SHEAVE DIAMETER</th>
<th>BELT DEFLECTION FORCE (LBS)</th>
<th>UNNOTCHED BELTS</th>
<th>NOTCHED BELTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>USED</td>
<td>NEW</td>
<td>USED</td>
</tr>
<tr>
<td>A, AX</td>
<td>3.0-3.6</td>
<td>3.7</td>
<td>5.5</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>3.8-4.8</td>
<td>4.5</td>
<td>6.8</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>5.0-7.0</td>
<td>5.4</td>
<td>8.0</td>
<td>5.7</td>
</tr>
<tr>
<td>B, BX</td>
<td>3.4-4.2</td>
<td>—</td>
<td>—</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>4.4-5.6</td>
<td>5.3</td>
<td>7.9</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>5.8-8.6</td>
<td>6.3</td>
<td>9.4</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>BELT CONDITION</th>
<th>TENSION FORCE IN BELT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>100</td>
</tr>
<tr>
<td>Used</td>
<td>80</td>
</tr>
</tbody>
</table>

Fig. 90 — V-Belt Force Label

Fig. 91 — Belt Drive Motor Mounting

Pre-Start and Start-Up — This completes the mechanical installation of the unit. Refer to the unit’s Service Manual for detailed Pre-Start and Start-Up instructions. Download the latest versions from HVAC Partners (www.hvacpartners.com).
START-UP CHECKLIST
(Remove and use for job file)

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices, and adhere to the safety considerations/information as outlined in preceding sections of this Installation Instructions.

MODEL NO.: ____________________________ SERIAL NO.: ____________________________

I. PRE-START-UP
☐ VERIFY THAT ALL PACKAGING MATERIALS HAVE BEEN REMOVED FROM UNIT
☐ VERIFY INSTALLATION OF OUTDOOR AIR HOOD
☐ VERIFY INSTALLATION OF FLUE EXHAUST AND INLET HOOD
☐ VERIFY THAT CONDENSATE CONNECTION IS INSTALLED PER INSTRUCTIONS
☐ VERIFY THAT ALL ELECTRICAL CONNECTIONS AND TERMINALS ARE TIGHT
☐ VERIFY GAS PRESSURE TO UNIT GAS VALVE IS WITHIN SPECIFIED RANGE
☐ CHECK GAS PIPING FOR LEAKS
☐ CHECK THAT INDOOR-AIR FILTERS ARE CLEAN AND IN PLACE
☐ CHECK THAT OUTDOOR AIR INLET SCREENS ARE IN PLACE
☐ VERIFY THAT UNIT IS LEVEL
☐ CHECK FAN WHEELS AND PROPELLER FOR LOCATION IN HOUSING/ORIFICE AND VERIFY SETSCREW IS TIGHT
☐ VERIFY THAT FAN SHEAVES ARE ALIGNED AND BELTS ARE PROPERLY TENSIONED
☐ VERIFY THAT SCROLL COMPRESSORS ARE ROTATING IN THE CORRECT DIRECTION
☐ VERIFY INSTALLATION OF THERMOSTAT
☐ VERIFY THAT CRANKCASE HEATERS HAVE BEEN ENERGIZED FOR AT LEAST 24 HOURS

II. START-UP
ELECTRICAL

SUPPLY VOLTAGE
L1-L2 _________ L2-L3 _________ L3-L1 _________

COMPRESSOR AMPS 1
L1-L2 _________ L2-L3 _________ L3-L1 _________

COMPRESSOR AMPS 2
L1-L2 _________ L2-L3 _________ L3-L1 _________

SUPPLY FAN AMPS
L1-L2 _________ L2-L3 _________ L3-L1 _________

TEMPERATURES
OUTDOOR-AIR TEMPERATURE _________ °F DB (DRY BULB)
RETURN-AIR TEMPERATURE _________ °F DB _________ °F WB (WET BULB)
COOLING SUPPLY AIR TEMPERATURE _________ °F
GAS HEAT SUPPLY AIRS _________ °F

PRESSURES
GAS INLET PRESSURE _________ IN. WG
GAS MANIFOLD PRESSURE
STAGE 1 _________ IN. WG
STAGE 2 _________ IN. WG
REFRIGERANT SUCTION CIRCUIT A _________ PSIG
CIRCUIT B _________ PSIG
REFRIGERANT DISCHARGE CIRCUIT A _________ PSIG
CIRCUIT B _________ PSIG

PRESSURES (CONT)
☐ VERIFY REFRIGERANT CHARGE USING CHARGING CHARTS

GENERAL
☐ ECONOMIZER MINIMUM VENT AND CHANGEOVER SETTINGS TO JOB REQUIREMENTS (IF EQUIPPED)
III. HUMIDI-MIZER SYSTEM START-UP

STEPS
- 1. CHECK CTB FOR JUMPER 5, 6, 7
 JUMPER 5, 6, 7 MUST BE CUT AND OPEN
- 2. OPEN HUMIDISTAT CONTACTS
- 3. START UNIT IN COOLING (CLOSE Y1)

OBSERVE AND RECORD
A. SUCTION PRESSURE _____________ PSIG
B. DISCHARGE PRESSURE _____________ PSIG
C. ENTERING AIR TEMPERATURE _____________ °F
D. LIQUID LINE TEMPERATURE AT OUTLET OR REHEAT COIL _____________ °F

E. CONFIRM CORRECT ROTATION FOR COMPRESSOR
F. CHECK FOR CORRECT RAMP-UP OF OUTDOOR FAN MOTOR AS CONDENSER COIL WARMs
- 4. CHECK UNIT CHARGE PER CHARGING CHART
- 5. SWITCH UNIT TO HIGH-LATENT MODE (SUBCOOLER) BY CLOSING HUMIDISTAT WITH Y1 CLOSED

OBSERVE
A. REDUCTION IN SUCTION PRESSURE (5 TO 7 PSI EXPECTED)
B. DISCHARGE PRESSURE UNCHANGED
C. LIQUID TEMPERATURE DROPS TO 50 TO 55°F RANGE
D. LIQUID SOLENOID VALVE (LSV) ENERGIZED (VALVE CLOSES)

- 6. SWITCH UNIT TO DEHUMID (REHEAT) BY OPENING Y1

OBSERVE
A. SUCTION PRESSURE INCREASES TO NORMAL COOLING LEVEL
B. DISCHARGE PRESSURE DECREASES (35 TO 50 PSI)
C. LIQUID TEMPERATURE RETURNS TO NORMAL COOLING LEVEL
D. DISCHARGE SOLENOID VALVE (DSV) ENERGIZED (VALVE CLOSES)
E. DISCHARGE SOLENOID VALVE (DSV) ENERGIZED, VALVE OPENS

- 7. WITH UNIT IN DEHUMID MODE CLOSE W1
 COMPRESSOR AND OUTDOOR FAN STOP; LSV AND DSV SOLENOIDS DE-ENERGIZED
- 8. OPEN W1 RESTORE UNIT TO DEHUMID MODE
- 9. OPEN HUMIDISTAT INPUT
 COMPRESSOR AND OUTDOOR FAN STOP; LSV AND DSV SOLENOIDS DE-ENERGIZED
- 10. RESTORE SETPOINTS FOR THERMOSTAT AND HUMIDISTAT

REPEAT PROCESS FOR 2 COMPRESSOR SYSTEMS