Installation Instructions

48TC*D/E units for installation in the United States contain use of Carrier's Staged Air Volume (SAV™) 2-speed indoor fan control system. This complies with the U.S. Department of Energy (DOE) efficiency standard of 2018.

48TC*D/E units for installation outside the United States may or may not contain Carrier's Staged Air Volume (SAV) 2-speed indoor fan control system as they are not required to comply with the U.S. Department of Energy (DOE) 2018 mandatory efficiency standard.

48TC*M units for installation inside or outside the United States do not contain use of Carrier's Staged Air Volume (SAV) 2-speed indoor fan motor control system as they comply with the U.S. Department of Energy (DOE) 2018 mandatory efficiency standard without their use.

For specific details on operation of the Carrier SAV 2-speed indoor fan system refer to the Variable Frequency Drive (VFD) Factory-Installed Option 2-Speed Motor Control Installation, Setup, and Troubleshooting manual.

SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock or other conditions which may cause personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloths for brazing operations and have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and appropriate national electrical codes (in USA, ANSI/NFPA70, National Electrical Code (NEC); in Canada, CSA C22.1) for special requirements.

It is important to recognize safety information. This is the safety-alert symbol. When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices, which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

WARNING
Failure to follow this warning could result in personal injury or death. Disconnect gas piping from unit when leak testing at pressure greater than 0.5 psig (3450 Pa). Pressures greater than 0.5 psig (3450 Pa) will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig (3450 Pa), it must be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig (3450 Pa) or less, a unit connected to such piping must be isolated by closing the manual gas valve.

If unit is subjected to pressure greater than 0.5 psig (3450 Pa), it must be disconnected and isolated by closing the manual gas valve.

WARNING
Failure to follow this warning could cause personal injury or death. Before performing service or maintenance operations on unit, always turn off main power switch to unit and install lock(s) and lockout tag(s). Unit may have more than one power switch.
These installation instructions cover the 48TC units with gas heat and electric cooling. Units are pre-wired and pre-charged with environmentally balanced Puron® (R-410A) refrigerant at the factory. See Fig. 1 for model number nomenclature. See Fig. 2-4 for unit dimensions. See Fig. 5 and 6 for service clearances.

Rated Indoor Airflow (cfm) — Table 1 lists the rated indoor airflow used for the AHRI efficiency rating for the units covered in this document.

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>FULL LOAD AIRFLOW (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48TC*M08</td>
<td>2,400</td>
</tr>
<tr>
<td>48TC*D/E08</td>
<td>2,250</td>
</tr>
<tr>
<td>48TC*M09</td>
<td>3,000</td>
</tr>
<tr>
<td>48TC*D/E09</td>
<td>3,400</td>
</tr>
<tr>
<td>48TC*M12</td>
<td>3,400</td>
</tr>
<tr>
<td>48TC*D/E12</td>
<td>3,000</td>
</tr>
<tr>
<td>48TC*D/E14</td>
<td>3,600</td>
</tr>
<tr>
<td>48TC*D/E16</td>
<td>5,250</td>
</tr>
</tbody>
</table>

Pre-Installation — Complete the following checks before installation.

1. Consult local building codes and the NEC (National Electrical Code) ANSI/NFPA 70 for special installation requirements.
2. Determine unit location (from project plans) or select unit location.
3. Check for possible overhead obstructions which may interfere with unit lifting or rigging.
Model Series - WeatherMaker®

TC - Standard Efficiency

Heat Options
- **D** = Low Heat
- **E** = Medium Heat
- **F** = High Heat
- **S** = Low Heat w/ Stainless Steel Exchanger
- **R** = Medium Heat w/ Stainless Steel Exchanger
- **T** = High Heat w/ Stainless Steel Exchanger

Cooling Tons
- **08** = 7.5 tons
- **09** = 8.5 tons
- **12** = 10 tons
- **14** = 12.5 tons
- **16** = 15 tons

Sensor Options
- **A** = None
- **B** = RA Smoke Detector
- **C** = SA Smoke Detector
- **D** = RA + SA Smoke Detector
- **E** = CO₂
- **F** = RA Smoke Detector and CO₂
- **G** = SA Smoke Detector and CO₂
- **H** = RA + SA Smoke Detector and CO₂
- **J** = Condensate Overflow Switch (electro-mechanical controls only)
- **K** = Condensate Overflow Switch and RA Smoke Detectors
- **L** = Condensate Overflow Switch and RA and SA Smoke Detectors

Indoor Fan Options
- **1** = Standard Static Option
- **2** = Medium Static Option
- **3** = High Static Option
- **C** = High Static Option with High Efficiency Motor (Size 16 Only)

Coil Options – RTPF (Outdoor - Indoor - Hail Guard)
- **A** = Al/Cu - Al/Cu
- **B** = Precast Al/Cu - Al/Cu
- **C** = E-coat Al/Cu - Al/Cu
- **D** = E-coat Al/Cu - E-coat Al/Cu
- **E** = Cu/Cu - Al/Cu
- **F** = Cu/Cu - Cu/Cu
- **M** = Al/Cu - Al/Cu — Louvered Hail Guard
- **N** = Precast Al/Cu - Al/Cu — Louvered Hail Guard
- **P** = E-coat Al/Cu - Al/Cu — Louvered Hail Guard
- **Q** = E-coat Al/Cu - E-coat Al/Cu — Louvered Hail Guard
- **R** = Cu/Cu - Al/Cu — Louvered Hail Guard
- **S** = Cu/Cu - Cu/Cu — Louvered Hail Guard

Coil Options – Novation® (Outdoor - Indoor - Hail Guard)
- **G** = Al/Al - Al/Cu
- **H** = Al/Al - Cu/Cu
- **J** = Al/Al - E-coat Al/Cu
- **K** = E-coat Al/Al - Al/Cu
- **L** = E-coat Al/Al - E-coat Al/Cu
- **T** = Al/Al - Al/Cu — Louvered Hail Guard
- **U** = Al/Al - Cu/Cu — Louvered Hail Guard
- **V** = Al/Al - E-coat Al/Cu — Louvered Hail Guard
- **W** = E-coat Al/Al - Al/Cu — Louvered Hail Guard
- **X** = E-coat Al/Al - E-coat Al/Cu — Louvered Hail Guard

Packaging Compliance
- **0** = Standard
- **1** = LTL

Electrical Options
- **A** = None
- **C** = Non-Fused Disconnect
- **D** = Thru-The-Base Connections
- **F** = Non-Fused Disconnect and Thru-The-Base Connections
- **G** = 2-Speed Indoor Fan (VFD) Controller
- **J** = 2-Speed Fan Controller (VFD) and Non-Fused Disconnect
- **K** = 2-Speed Fan Controller (VFD) and Thru-The-Base Connections
- **M** = 2-Speed Fan Controller (VFD) with Non-Fused Disconnect and Thru-The-Base Connections

Intake / Exhaust Options
- **A** = None
- **B** = Temperature Economizer w/ Barometric Relief
- **F** = Enthalpy Economizer w/ Barometric Relief
- **K** = 2-Position Damper
- **U** = Temperature Ultra Low Leak Economizer w/ Barometric Relief
- **W** = Enthalpy Ultra Low Leak Economizer w/ Barometric Relief

Service Options
- **0** = None
- **1** = Unpowered Convenience Outlet
- **2** = Powered Convenience Outlet
- **3** = Hinged Panels
- **4** = Hinged Panels and Unpowered Convenience Outlet
- **5** = Hinged Panels and Powered Convenience Outlet

Base Unit Controls
- **0** = None
- **1** = PremierLink™ Controller
- **2** = RTU Open Multi-Protocol Controller
- **6** = Electro-mechanical w/ 2-Speed Fan and W7220 Economizer Controller Controls. Can be used with W7220 Economizer X (w/ Fault Detection and Diagnostic)

Design Revision
- **-** = Factory Design Revision

Voltage
- **1** = 575/5/60
- **5** = 208-230/3
- **6** = 460/3/60

*PremierLink controller cannot be used with Staged Air Volume (SAV™) 2-speed indoor fan motor.

![Fig. 1 — 48TC**08-16 Units Model Number Nomenclature](image-url)
Fig. 4 — Unit Dimensional Drawing Size 16 (cont)

Standard unit weight is with 2 in. (50 mm) of foam insulation. For ordering accessories, refer to the product data catalog.
Fig. 5 — Service Clearances — 48TC08-14 Units

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DIMENSION in. (mm)</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>48 (1219)</td>
<td>Unit disconnect is mounted on panel.</td>
</tr>
<tr>
<td></td>
<td>18 (467)</td>
<td>No disconnect, convenience outlet option.</td>
</tr>
<tr>
<td></td>
<td>18 (467)</td>
<td>Recommended service clearance.</td>
</tr>
<tr>
<td></td>
<td>12 (305)</td>
<td>Minimum clearance.</td>
</tr>
<tr>
<td>B</td>
<td>42 (1067)</td>
<td>Surface behind servicer is grounded (e.g., metal, masonry wall).</td>
</tr>
<tr>
<td></td>
<td>36 (914)</td>
<td>Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass).</td>
</tr>
<tr>
<td></td>
<td>Special</td>
<td>Check for sources of flue products within 10-ft of unit fresh air intake hood.</td>
</tr>
<tr>
<td>C</td>
<td>36 (914)</td>
<td>Side condensate drain is used.</td>
</tr>
<tr>
<td></td>
<td>18 (467)</td>
<td>Minimum clearance.</td>
</tr>
<tr>
<td>D</td>
<td>48 (1219)</td>
<td>No flue discharge accessory installed, surface is combustible material.</td>
</tr>
<tr>
<td></td>
<td>42 (1067)</td>
<td>Surface behind servicer is grounded (e.g., metal, masonry wall, another unit).</td>
</tr>
<tr>
<td></td>
<td>36 (914)</td>
<td>Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass).</td>
</tr>
<tr>
<td></td>
<td>Special</td>
<td>Check for adjacent units or building fresh air intakes within 10-ft (3 m) of this unit’s flue outlet.</td>
</tr>
</tbody>
</table>

NOTE: Unit is not designed to have overhead obstruction. Contact Application Engineering for guidance on any application planning overhead obstruction or for vertical clearances.
INSTALLATION

Step 1 — Plan for Unit Location — Select a location for the unit and its support system (curb or other) that provides for the minimum clearances required for safety. This includes the clearance to combustible surfaces, unit performance, and service access below, around, and above unit as specified in unit drawings. See Fig. 2-4.

NOTE: Consider also the effect of adjacent units.

Be sure that unit is installed such that snow will not block the combustion intake or flue outlet.

Unit may be installed directly on wood flooring or on class A, B, or C roof-covering material when roof curb is used.

Do not install unit in an indoor location. Do not locate air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute) and NFPA (National Fire Protection Association) 54 TIA-54-84-1. In Canada, installation must be in accordance with the CAN1-B149 installation codes for gas burning appliances.

Although unit is weatherproof, avoid locations that permit water from higher level runoff and overhangs to fall onto the unit.

For sizes 08-14 only, locate mechanical draft system flue assembly at least 4 ft (1.2 m) from any opening through which combustion products could enter the building, and at least 4 ft (1.2 m) from any adjacent building (or per local code). Locate the flue assembly at least 10 ft (3.05 m) from an adjacent unit’s fresh air intake hood if within 3 ft (0.91 m) of same elevation (or per local code). When unit is located adjacent to public walkways, flue assembly must be at least 7 ft (2.1 m) above grade.

Select a unit mounting system that provides adequate height to allow installation of condensate trap per requirements. See Step 11 — Install External Condensate Trap and Line on page 23 for required trap dimensions.

ROOF MOUNT — Check building codes for weight distribution requirements. Unit operating weight is shown in Table 2.

Step 2 — Plan for Sequence of Unit Installation — The support method used for this unit will dictate different sequences for the steps of unit installation. For example, on curb-mounted units, some accessories must be installed on the unit before the unit is placed on the curb. Review the following for recommended sequences for installation steps.

CURB-MOUNTED INSTALLATION

1. Install curb
2. Install field-fabricated ductwork inside curb

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>DIMENSION in. (mm)</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>48 (1219) 18 (457) 12 (305)</td>
<td>Unit disconnect is mounted on panel. No disconnect, convenience outlet option. Recommended service clearance. Minimum clearance.</td>
</tr>
<tr>
<td>B</td>
<td>42 (1067) 36 (914) Special</td>
<td>Surface behind servicer is grounded (e.g., metal, masonry wall). Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass). Check for sources of flue products within 10-ft of unit fresh air intake hood.</td>
</tr>
<tr>
<td>C</td>
<td>36 (914) 18 (457)</td>
<td>Side condensate drain is used. Minimum clearance.</td>
</tr>
<tr>
<td>D</td>
<td>48 (1219) 42 (1067) 36 (914) Special</td>
<td>No flue discharge accessory installed, surface is combustible material. Surface behind servicer is grounded (e.g., metal, masonry wall, another unit). Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass). Check for adjacent units or building fresh air intakes within 10-ft (3 m) of this unit’s flue outlet.</td>
</tr>
</tbody>
</table>

NOTE: Unit is not designed to have overhead obstruction. Contact Application Engineering for guidance on any application planning overhead obstruction or for vertical clearances.

Fig. 6 — Service Clearances — 48TC**16 Units
3. Install accessory thru-base service connection package (affects curb and unit) (refer to accessory installation instructions for details)

4. Prepare bottom condensate drain connection to suit planned condensate line routing (see Step 11 — Install External Condensate Trap and Line on page 23 for details)

5. Rig and place unit
6. Install outdoor air hood
7. Install flue hood
8. Install gas piping
9. Install condensate line trap and piping
10. Make electrical connections
11. Install other accessories

PAD-MOUNTED INSTALLATION
1. Prepare pad and unit supports
2. Check and tighten the bottom condensate drain connection plug
3. Rig and place unit
4. Convert unit to side duct connection arrangement
5. Install field-fabricated ductwork at unit duct openings
6. Install outdoor air hood
7. Install flue hood
8. Install gas piping
9. Install condensate line trap and piping
10. Make electrical connections
11. Install other accessories

FRAME-MOUNTED INSTALLATION — Frame-mounted applications generally follow the sequence for a curb installation. Adapt as required to suit specific installation plan.

Step 3 — Inspect Unit — Inspect unit for transportation damage. File any claim with transportation agency. Confirm before installation of unit that voltage, amperage and circuit protection requirements listed on unit data plate agree with power supply provided.

Step 4 — Provide Unit Support

ROOF CURB MOUNT — Accessory roof curb details and dimensions are shown in Fig. 2-4. Assemble and install accessory roof curb in accordance with instructions shipped with the curb.

Curb should be level. This is necessary for unit drain to function properly. Unit leveling tolerances are show in Fig. 7. Refer to Accessory Roof Curb Installation Instructions for additional information as required.

Table 2 — Operating Weights

<table>
<thead>
<tr>
<th>48TC</th>
<th>UNITS — lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08</td>
</tr>
<tr>
<td>48TC*M</td>
<td>777 (353)</td>
</tr>
<tr>
<td>48TC*D</td>
<td>900 (408)</td>
</tr>
</tbody>
</table>

Economizer
- Vertical: 75 (34)
- Horizontal: 122 (55)

Humidi-MiZer® System
- 14-in. (356 mm): 143 (65)
- 16-in. (610 mm): 245 (111)

Powered Outlet
- 14-in. (356 mm): 143 (65)
- 16-in. (610 mm): 245 (111)

* Humidi-MiZer is not available on 48TC*M models.
Fig. 8 — 48TC**08-14 — Roof Curb Details

NOTES:
1. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
2. INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] # DENSITY.
3. DIMENSIONS IN [] ARE IN MILLIMETERS.
4. ROOF CURB IS 18 GAGE STEEL.
5. ATTACH DUCTWORK TO CURB (FLANGES OF DUCT REST ON CURB).
6. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGES CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTION.
7. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
8. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGES CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTION.
9. ROOF CURB: 18 GAGE STEEL.
10. ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB).
11. SERVICE CLEARANCE 4 FEET ON EACH SIDE.
12. DIRECTION OF AIR FLOW.

NOTES:
1. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
2. INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] # DENSITY.
3. DIMENSIONS IN [] ARE IN MILLIMETERS.
4. ROOF CURB IS 18 GAGE STEEL.
5. ATTACH DUCTWORK TO CURB (FLANGES OF DUCT REST ON CURB).
6. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGES CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTION.
7. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
8. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGES CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTION.
9. ROOF CURB: 18 GAGE STEEL.
10. ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB).
11. SERVICE CLEARANCE 4 FEET ON EACH SIDE.
12. DIRECTION OF AIR FLOW.

NOTES:
1. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
2. INSULATED PANELS: 25.4 [1"] THK. POLYURETHANE FOAM, 44.5 [1-3/4"] # DENSITY.
3. DIMENSIONS IN [] ARE IN MILLIMETERS.
4. ROOF CURB IS 18 GAGE STEEL.
5. ATTACH DUCTWORK TO CURB (FLANGES OF DUCT REST ON CURB).
6. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGES CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTION.
7. ROOF CURB ACCESSORY IS SHIPPED DISASSEMBLED.
8. CONNECTOR PACKAGE CRBTMPWR001A01 IS FOR THRU-THE-CURB GAS TYPE.
 PACKAGES CRBTMPWR003A01 IS FOR THRU-THE-BOTTOM TYPE GAS CONNECTION.
9. ROOF CURB: 18 GAGE STEEL.
10. ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB).
11. SERVICE CLEARANCE 4 FEET ON EACH SIDE.
12. DIRECTION OF AIR FLOW.
SLAB MOUNT (HORIZONTAL UNITS ONLY) — Provide a level concrete slab that extends a minimum of 6 in. (150 mm) beyond unit cabinet. Install a gravel apron in front of condenser coil air inlet to prevent grass and foliage from obstructing airflow.

NOTE: Horizontal units may be installed on a roof curb if required.

ALTERNATE UNIT SUPPORT (IN LIEU OF CURB OR SLAB MOUNT) — A non-combustible sleeper rail can be used in the unit curb support area. If sleeper rails cannot be used, support the long sides of the unit with a minimum of 3 equally spaced 4-in. x 4-in. (102 mm x 102 mm) pads on each side.

Step 5 — Field Fabricate Ductwork

NOTE: Cabinet return-air static pressure (a negative condition) shall not exceed 0.35 in. wg (87 Pa) with economizer or 0.45 in. wg (112 Pa) without economizer.

For vertical ducted applications, secure all ducts to roof curb and building structure. Do not connect ductwork to unit.

Fabricate supply ductwork so that the cross sectional dimensions are equal to or greater than the unit supply duct opening dimensions for the first 18 in. (458 mm) of duct length from the unit basepan.

Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

Ducts passing through unconditioned spaces must be insulated and covered with a vapor barrier.

If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.

CAUTION

Failure to follow this caution may result in damage to roofing materials.

Membrane roofs can be cut by sharp sheet metal edges. Be careful when placing any sheet metal parts on such roof.

Step 6 — Rig and Place Unit — Keep unit upright and do not drop. Spreaders are required for 08-14 size units; size 16 units do not require spreader bars. Rollers may be used to move unit across a roof. Level by using unit frame as a reference. See Table 2 and Fig. 10 for additional information.

Lifting holes are provided in base rails as shown in Fig. 10. Refer to rigging instructions on unit.

Rigging materials under unit (cardboard or wood to prevent base pan damage) must be removed PRIOR to placing the unit on the roof curb.

When using the standard side drain connection, ensure the red plug in the alternate bottom connection is tight. Do this before setting the unit in place. The red drain pan can be tightened with a 1/2-in. square socket drive extension. For further details see Step 11 — Install External Condensate Trap and Line on page 23.

Before setting the unit onto the curb, recheck gasketing on curb.

CAUTION

Failure to follow this caution may result in equipment damage.

All panels must be in place when rigging. Unit is not designed for handling by fork truck.

Table 2 — Max Weight and Dimensions

<table>
<thead>
<tr>
<th>UNIT</th>
<th>MAX WEIGHT</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>KG</td>
</tr>
<tr>
<td>48TC-M08</td>
<td>1295</td>
<td>588</td>
</tr>
<tr>
<td>48TC-M09</td>
<td>1335</td>
<td>606</td>
</tr>
<tr>
<td>48TC-M12</td>
<td>1435</td>
<td>651</td>
</tr>
<tr>
<td>48TC*DE08</td>
<td>1445</td>
<td>657</td>
</tr>
<tr>
<td>48TC*DE09</td>
<td>1565</td>
<td>711</td>
</tr>
<tr>
<td>48TC*DE12</td>
<td>1605</td>
<td>730</td>
</tr>
<tr>
<td>48TC*DE14</td>
<td>1760</td>
<td>800</td>
</tr>
<tr>
<td>48TC*DE16</td>
<td>2130</td>
<td>968</td>
</tr>
</tbody>
</table>

NOTES:
1. SPREADER BARS REQUIRED FOR SIZES 08-14 — Top damage will occur if spreader bars are not used. Not required for size 16.
2. Dimensions in () are in millimeters.
3. Hook rigging shackles through holes in base rail, as shown in detail “A.” Holes in base rails are centered around the unit center of gravity. Use wooden top to prevent rigging straps from damaging unit.

Fig. 10 — Rigging Details
POSITIONING ON CURB

For Size 08-14 position unit on roof curb so that the following clearances are maintained: 1/4 in. (6.4 mm) clearance between the roof curb and the base rail inside the front and back, 0.0 in. clearance between the roof curb and the base rail inside on the duct end of the unit. This will result in the distance between the roof curb and the base rail inside on the condenser end of the unit being approximately 1/4 in. (6.4 mm).

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Flue vent discharge must have a minimum horizontal clearance of 4 ft (1220 mm) from electric and gas meters, gas regulators, and gas relief equipment. Minimum distance between unit and other electrically live parts is 48 inches (1220 mm).

Flue gas can deteriorate building materials. Orient unit such that flue gas will not affect building materials. Locate mechanical draft system flue assembly at least 48 in. (1220 mm) from an adjacent building or combustible material.

NOTE: Installation of accessory flue discharge deflector kit will reduce the minimum clearance to combustible material to 18 in. (460 mm).

After unit is in position, remove rigging skids and shipping materials.

For Size 16, full perimeter curbs CRRFCURB074A00 and 075A00, the clearance between the roof curb and the front and rear base rails should be 1/4 in. (6.4 mm). The clearance between the curb and the end base rails should be 1/2 in. (13 mm). For retrofit applications with curbs CRRFCURB003A01 and 4A01, the unit should be position as shown in Fig. 11. Maintain the 15.5 in. (394 mm) and 8 5/8 in. (220 mm) clearances and allow the 22 5/16 in. (567 mm) dimension to float if necessary.

Fig. 11 — Retrofit Installation Dimensions (Size 16 Shown)

If the alternative condensate drain location through the bottom of the unit is used in conjunction with a retrofit curb, the hole in the curb must be moved 12.5 in. (320 mm) towards the duct end of the unit. See Fig. 12.

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Remove all shipping materials and top skid. Remove extra center post from the condenser end of the unit so that the condenser end of the unit matches Fig. 39 and 40. Recycle or dispose of all shipping materials.

Step 7 — Convert to Horizontal and Connect Ductwork (When Required)

SIZES 08-14 CONVERSION — Unit is shipped in the vertical duct configuration. Unit without factory-installed econo- mizer or return air smoke detector option may be field-converted to horizontal ducted configuration. To convert to horizontal configuration, remove screws from side duct opening covers and remove covers. Using the same screws, install covers on vertical duct openings with the insulation-side down. Seals around duct openings must be tight. See Fig. 13.
SIZE 16 CONVERSION — Unit is shipped in the vertical duct configuration. Unit without factory-installed economizer or return air smoke detector option may be field-converted to horizontal ducted configuration using accessory CRDUCTCV002A00. To convert to horizontal configuration, remove screws from side duct opening covers and remove covers.

Discard the supply duct cover. Install accessory CRDUCTCV002A00 to cover the vertical supply duct opening. Use the return duct cover removed from the end panel to cover the vertical return duct opening.

ALL UNITS — Field-supplied flanges should be attached to horizontal duct openings and all ductwork should be secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof or building openings with counter flashing and mastic in accordance with applicable codes.

Do not cover or obscure visibility to the unit’s informative data plate when insulating horizontal ductwork.

Step 8 — Install Outside Air Hood

ECONOMIZER AND TWO POSITION DAMPER HOOD PACKAGE REMOVAL — FACTORY OPTION (SIZE 08-14)

1. The hood is shipped in knock-down form and must be field assembled. The indoor coil access panel is used as the hood top while the hood sides, divider and filter are packaged together, attached to a metal support tray using plastic stretch wrap, and shipped in the return air compartment behind the indoor coil access panel. The hood assembly’s metal tray is attached to the basepan and also attached to the damper using two plastic tie-wraps.

2. To gain access to the hood, remove the filter access panel. (See Fig. 14).

3. Locate the (2) screws holding the metal tray to the basepan and remove. Locate and cut the (2) plastic tie-wraps securing the assembly to the damper (see Fig. 15). Be careful to not damage any wiring or cut tie-wraps securing any wiring. The indoor coil access panel will be used as the top of the damper hood. Remove the screws along the sides and bottom of the indoor coil access panel.

4. Carefully lift the hood assembly (with metal tray) through the filter access opening and assemble per the steps outlined in Economizer Hood and Two-Position Damper Hood Setup (Sizes 08-14) on page 18.

ECONOMIZER HOOD REMOVAL — FACTORY OPTION (SIZE 16)

1. The hood is shipped in knock-down form and located in the return air compartment. It is attached to the economizer using two plastic tie-wraps.

2. To gain access to the hood, remove the filter access panel (see Fig. 14).

3. Locate and cut the (2) plastic tie-wraps being careful (see Fig. 16). Be careful to not damage any wiring or cut tie-wraps securing any wiring.

4. Carefully lift the hood assembly (with metal tray) through the filter access opening and assemble per the steps outlined in Economizer and Two-Position Hood Setup, Size 16, on page 18.
TWO-POSITION DAMPER HOOD REMOVAL — FACTORY OPTION (SIZE 16)

1. The hood is shipped in knock-down form and assembled to a metal support tray using plastic stretch wrap. Located in the return air compartment, the assembly’s metal tray is attached to the basepan and also attached to the damper using two plastic tie-wraps.

2. To gain access to the hood, remove the filter access panel. See Fig. 14.

3. Locate the (2) screws holding the metal tray to the basepan and remove. In order to remove the screws, it may be necessary to remove the panel underneath the two-position damper. Remove the two screws. Locate and cut the (2) plastic tie-wraps securing the assembly to the damper. (See Fig. 16.) Be careful to not damage any wiring or cut tie-wraps securing any wiring.

4. Carefully lift the hood assembly (with metal tray) through the filter access opening and assemble per the steps outlined in ECONOMIZER AND TWO-POSITION DAMPER HOOD SETUP, SIZE 16 on page 18.

5. If removed, reattach the panel under the damper.

ECONOMIZER AND TWO-POSITION DAMPER HOOD SETUP (SIZE 08-14)

NOTE: If the power exhaust accessory is to be installed on the unit, the hood shipped with the unit will not be used and must be discarded. Save the aluminum filter for use in the power exhaust hood assembly.

1. The indoor coil access panel will be used as the top of the hood. Remove the screws along the sides and bottom of the indoor coil access panel. See Fig. 17.

2. Swing out indoor coil access panel and insert the hood sides under the panel (hood top). Use the screws provided to attach the hood sides to the hood top. Use screws provided to attach the hood sides to the unit. See Fig. 18.

3. Remove the shipping tape holding the economizer barometric relief damper in place (economizer only).

4. Insert the hood divider between the hood sides. See Fig. 18 and 19. Secure hood divider with 2 screws on each hood side. The hood divider is also used as the bottom filter rack for the aluminum filter.

5. Open the filter clips which are located underneath the hood top. Insert the aluminum filter into the bottom filter rack (hood divider). Push the filter into position past the open filter clips. Close the filter clips to lock the filter into place. See Fig. 19.

6. Caulk the end of the joint between the unit top panel and the hood top.

7. Replace the filter access panel.

Fig. 17 — Indoor Coil Access Panel Relocation (Size 08-14 Shown)

Fig. 18 — Economizer Hood Construction (Size 08-14 Shown)

Fig. 19 — Economizer Filter Installation (Size 08-14 Shown)

ECONOMIZER AND TWO-POSITION DAMPER HOOD SETUP, SIZE 16

NOTE: If the power exhaust accessory is to be installed on the unit, the hood shipped with the unit will not be used and must be discarded. Save the aluminum filter for use in the power exhaust hood assembly.

1. The indoor coil access panel will be used as the top of the hood. If the panel is still attached to the unit, remove the screws along the sides and bottom of the panels. See Fig. 20.

2. Swing out indoor coil access panel and insert the hood sides under the panel (hood top). Be careful not to lift the panel too far as it might fall out. Use the screws provided to attach the hood sides to the hood top. Use screws provided to attach the hood sides to the unit. See Fig. 21.

3. Remove the shipping tape holding the economizer barometric relief damper in place (economizer only).

4. Insert the hood divider between the hood sides. See Fig. 21 and 22. Secure hood divider with 2 screws on each hood side. The hood divider is also used as the bottom filter rack for the aluminum filter.
5. Open the filter clips which are located underneath the hood top. Insert the aluminum filter into the bottom filter rack (hood divider). Push the filter into position past the open filter clips. Close the filter clips to lock the filter into place. See Fig. 22.

6. Caulk the ends of the joint between the unit top panel and the hood top.

7. Replace the filter access panel.

Step 9 — Install Flue Hood — Flue hood is shipped screwed to the basepan beside the burner compartment access panel. Remove from shipping location and using screws provided, install flue hood and screen in location shown in Fig. 23 for size 08-14 and Fig. 24 for size 16.
Step 10 — Install Gas Piping — Installation of the gas piping must be accordance with local building codes and with applicable national codes. In U.S.A., refer to NFPA 54/ ANSI Z223.1 National Fuel Gas Code (NFGC). In Canada, installation must be accordance with the CAN/CSA B149.1 and CAN/CSA B149.2 installation codes for gas burning appliances. This unit is factory equipped for use with Natural Gas fuel at elevations up to 2000 ft (610 m) above sea level. Unit may be field converted for operation at elevations above 2000 ft (610 m) and/or for use with liquefied petroleum fuel. See accessory kit installation instructions regarding these accessories.

NOTE: Furnace gas input rate on rating plate is for installation up to 2000 ft (610 m) above sea level. The input rating for altitudes above 2000 ft (610 m) must be derated by 4% for each 1000 ft (305 m) above sea level. For natural gas applications, gas pressure at unit gas connection must not be less than 4 in. wg (996 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating for size 08 to 14 and 5 in. wg (996 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating for size 16 see Table 3. For liquefied petroleum applications, the gas pressure must not be less than 11 in. wg (2740 Pa) or greater than 13 in. wg (3240 Pa) at the unit connection, see Table 4.

Table 3 — Natural Gas Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48TCD/E/F/S/R/T</td>
<td>08, 09, 12, 14</td>
<td>4.0 in. wg (996 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.0 in. wg (1250 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
</tbody>
</table>

Table 4 — Liquid Propane Supply Line Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>48TCD/E/F/S/R/T</td>
<td>08, 09, 12, 14</td>
<td>11.0 in. wg (2740 Pa)</td>
<td>13.0 in. wg (3240 Pa)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>13.0 in. wg (3240 Pa)</td>
<td></td>
</tr>
</tbody>
</table>

The gas supply pipe enters the unit at the burner access panel on the front side of the unit, through the long slot at the bottom of the access panel. The gas connection to the unit is made to the 1/2-in. FPT gas inlet port on the unit gas valve for sizes 08-14 and 3/4-in. FPT gas inlet port on the unit gas valve for size 16, see Fig. 25. For liquefied petroleum applications, the gas pressure must not be less than 11 in. wg (2740 Pa) or greater than 13 in. wg (3240 Pa) at the unit connection, see Table 4.

Table 5 — Natural Gas Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>48TCD/E/F/S/R/T</td>
<td>08, 09, 12, 14</td>
<td>2.5 in. wg (872 Pa)</td>
<td>2.0 in. wg (498 Pa)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3.0 in. wg (747 Pa)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>48TCD/E/F/S/R/T</td>
<td>08, 09, 12, 14</td>
<td>10.0 in. wg (2490 Pa)</td>
<td>5.7 in. wg (1420 Pa)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.6 in. wg (1644 Pa)</td>
<td></td>
</tr>
</tbody>
</table>

* LOW FIRE, 1.7 in. wg (423 Pa), applies to the following units only: 48TCD/E/F/08 and 48TCD/E/F/09.

Manifold pressure for LP fuel use must be adjusted to specified range, see Table 6. Follow instructions in the accessory kit to make initial readjustment.

Table 6 — Liquid Propane Manifold Pressure Ranges

<table>
<thead>
<tr>
<th>UNIT MODEL</th>
<th>UNIT SIZE</th>
<th>HIGH FIRE</th>
<th>LOW FIRE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>48TCD/E/F/S/R/T</td>
<td>08, 09, 12, 14</td>
<td>10.0 in. wg (2490 Pa)</td>
<td>5.7 in. wg (1420 Pa)</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.6 in. wg (1644 Pa)</td>
<td></td>
</tr>
</tbody>
</table>

* LOW FIRE, 5.0 in. wg (1420 Pa), applies to the following units only: 48TCD/E/F/08 and 48TCD/E/F/09.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe size smaller than 1/2-inch. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate.

The gas supply line can approach the unit in three ways: horizontally from outside the unit (across the roof), thru-curb/under unit basepan (accessory kit required) or through unit basepan (factory-option or accessory kit required). Consult accessory kit installation instructions for details on these installation methods. Observe clearance to gas line components per Fig. 25.

Fig. 25 — Gas Piping Guide (with Accessory Thru-the-Curb Service Connections)

FACTORY-OPTION THRU-BASE CONNECTIONS (GAS CONNECTIONS) (SIZES 08-14) — This service connection kit consists of a 1/2-in. NPT gas adapter fitting (brass), a 1/2-in. electrical bulkhead connector and a 3/4-in. electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. See Fig. 26.

Failure to follow this caution may result in damage to equipment.

When connecting the gas line to the unit gas valve, the installer MUST use a backup wrench to prevent damage to the valve.
The thru-base gas connector has male and female threads. The male threads protrude above the basepan of the unit; the female threads protrude below the basepan.

Check tightness of connector lock nuts before connecting gas piping.

Install a 1/2-in. NPT street elbow on the thru-base gas fitting. Attach a 1/2-in. pipe nipple with minimum length of 16-in. (406 mm) (field-supplied) to the street elbow and extend it through the access panel at the gas support bracket. See Fig. 27.

Fig. 27 — Gas Line Piping (Sizes 08-14)

FACTORY-OPTION THRU-BASE GAS CONNECTIONS (SIZE 16) — This service connection kit consists of a 3/4-in. NPT gas adapter fitting (stainless steel), a 1/2-in. electrical bulkhead connector and a 1 1/2-in. electrical bulkhead connector, connected to an “L” bracket covering the embossed (raised) section of the unit basepan in the condenser section. See Fig. 28.

1. Remove the “L” bracket assembly from the unit (see Fig. 28).
2. Cut and discard the wire tie on the gas fitting. Hand tighten the fitting if it has loosened in transit.
3. Remove connector plate assembly from the “L” bracket and discard the “L” bracket, but retain the washer head screws and the gasket (located between the “L” bracket and the connector plate assembly.

NOTE: Take care not to damage the gasket, as it is reused in the following step.

4. Place the gasket over the embossed area in the basepan, aligning the holes in the gasket to the holes in the basepan. See Fig. 29.
5. Install the connector plate assembly to the basepan using 8 of the washer head screws.

Fig. 28 — Thru-Base Connection Fittings (Size 16 Shown)

Fig. 29 — Completing Installation of Thru-the-Base Option (Size 16 Shown)

NOTE: If gas and/or electrical connections are not going to occur at this time, tape or otherwise cover the fittings so that moisture does not get into the building or conduit in the interim.

The thru-base gas connector has male and female threads. The male threads protrude above the basepan of the unit; the female threads protrude below the basepan.

Check tightness of connector lock nuts before connecting gas piping.

Install a 3/4-in. NPT street elbow (field-supplied) on the thru-base gas fitting. Attach a 3/4-in. pipe nipple with minimum length of 16-in. (406 mm) (field-supplied) to the street elbow and extend it through the access panel at the gas support bracket (see Fig. 30).
ALL UNITS — Other hardware required to complete the installation of the gas supply line will include a manual shutoff valve, a sediment trap (drip leg) and a ground-joint union. A pressure regulator valve may also be required (to convert gas pressure from pounds to inches of pressure). The manual shutoff valve must be located within 6-ft (1.83 m) of the unit. The union, located in the final leg entering the unit, must be located at least 9-in. (230 mm) away from the access panel to permit the panel to be removed for service. If a regulator valve is installed, it must be located a minimum of 4-ft (1220 mm) away from the unit’s flue outlet. Some municipal codes require that the manual shutoff valve be located upstream of the sediment trap. See Fig. 31 and 32 for typical piping arrangements for gas piping that has been routed through the sidewall of the curb. See Fig. 33 for typical piping arrangement when thru-base is used. Ensure that all piping does not block access to the unit’s main control box or limit the required working space in front of the control box.

When installing the gas supply line, observe local codes pertaining to gas pipe installations. Refer to the NFPA 54/ANSI Z223.1 NFGC latest edition (in Canada, CAN/CSA B149.1). In the absence of local building codes, adhere to the following pertinent recommendations:

1. Avoid low spots in long runs of pipe. Grade all pipe 1/4-in. in every 15 ft (7 mm in every 5 m) to prevent traps. Grade all horizontal runs downward to risers. Use risers to connect to heating section and to meter.

2. Protect all segments of piping system against physical and thermal damage. Support all piping with appropriate straps, hangers, etc. Use a minimum of one hanger every 6 ft (1.8 m). For pipe sizes larger than 1/2-in., follow recommendations of national codes.

3. Apply joint compound (pipe dope) sparingly and only to male threads of joint when making pipe connections. Use only pipe dope that is resistant to action of liquefied petroleum gases as specified by local and/or national codes. If using PTFE (Teflon) tape, ensure the material is Double Density type and is labeled for use on gas lines. Apply tape per manufacturer’s instructions.

4. Pressure-test all gas piping in accordance with local and national plumbing and gas codes before connecting piping to unit.

1. Teflon is a registered trademark of DuPont Corporation.
NOTE: Pressure test the gas supply system after the gas supply piping is connected to the gas valve. The supply piping must be disconnected from the gas valve during the testing of the piping systems when test pressure is in excess of 0.5 psig (3450 Pa). Pressure test the gas supply piping system at pressures equal to or less than 0.5 psig (3450 Pa). The unit heating section must be isolated from the gas piping system by closing the external main manual shutoff valve and slightly opening the ground-joint union.

Check for gas leaks at the field-installed and factory-installed gas lines after all piping connections have been completed. Use soap-and-water solution (or method specified by local codes and/or regulations).

NOTE: If orifice hole appears damaged or it is suspected to have been re-drilled, check orifice hole with a numbered drill bit of correct size. Never re-drill an orifice (see Fig. 34). A burr-free and squarely aligned orifice hole is essential for proper flame characteristics.

![Fig. 34 — Orifice Hole](image)

Step 11 — Install External Condensate Trap and Line — The unit has one 3/4-in. condensate drain connection on the end of the condensate pan and an alternate connection on the bottom. See Fig. 35. Unit airflow configuration does not determine which drain connection to use. Either drain connection can be used with vertical or horizontal applications.

To use the alternate bottom drain connection, remove the red drain plug from the bottom connection (use a 1/2-in. square socket drive extension) and install it in the side drain connection.

The piping for the condensate drain and external trap can be completed after the unit is in place. See Fig. 35 and 36.

![Fig. 35 — Condensate Drain Pan (Side View)](image)

Fig. 35 — Condensate Drain Pan (Side View)

NOTE: If the alternate bottom drain is not used check the drain plug for tightness prior to setting the unit on the roof curb.

![Fig. 36 — Condensate Drain Piping Details](image)

Fig. 36 — Condensate Drain Piping Details

All units must have an external trap for condensate drainage. Install a trap at least 4-in. (102 mm) deep and protect against freeze-up. If drain line is installed downstream from the external trap, pitch the line away from the unit at 1-in. per 10 ft (25 mm in 3 m) of run. Do not use a pipe size smaller than the unit connection (3/4-in.).

Step 12 — Make Electrical Connections

WARNING

Failure to follow this warning could result in personal injury or death.

Do not use gas piping as an electrical ground. Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code); ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

NOTE: Field-supplied wiring shall conform with the limitations of minimum 63 F (33 C) rise.

FIELD POWER SUPPLY (SIZES 08-14) — If equipped with optional Powered Convenience Outlet: The power source leads to the convenience outlet’s transformer primary are not factory connected. Installer must connect these leads according to required operation of the convenience outlet. If an always-energized convenience outlet operation is desired, connect the source leads to the line side of the unit-mounted disconnect. (Check with local codes to ensure this method is acceptable in your area.) If a de-energize via unit disconnect switch operation of the convenience outlet is desired, connect the source.
leads to the load side of the unit disconnect. On a unit without
a unit-mounted disconnect, connect the source leads to com-
pressor contactor C and indoor fan contactor IFC pressure lugs
with unit field power leads (see Fig. 37).

Units Without Disconnect Option

<table>
<thead>
<tr>
<th>C</th>
<th>IFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
</tr>
</tbody>
</table>

Units With Disconnect Option

L1 -	2
L2 -	4
L3 -	6

Disconnect factory test leads and discard.

Fig. 37 — Power Wiring Connections (Sizes 08-14)

Units Without Disconnect Option

<table>
<thead>
<tr>
<th>TB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
</tr>
</tbody>
</table>

Units With Disconnect Option

L1 -	2
L2 -	4
L3 -	6

Disconnect factory test leads; discard.

Fig. 38 — Power Wiring Connections (Sizes 16)

Field power wires are connected to the unit at line-side pres-
sure lugs on compressor contactor C and indoor fan contactor
IFC (see wiring diagram label for control box component ar-
rangement) or at factory-installed option non-fused disconnect
switch. Max wire size is #4 AWG (copper only).

FIELD POWER SUPPLY (SIZE 16) — (Fig. 38) For those
units without through-the-curb power, conduit must be used to
route the main power from the condenser end, via the power
entry in the corner post of the unit (see Fig. 39 and 40) to either
the factory option disconnect or the bottom of the control box.
One in. conduit is provided wrapped around compressor. A
second conduit is provided with factory installed powered con-
venience outlet. For those units that require conduit larger than
1 in., it must be field supplied. Fig. 39 and 40 show the wire
routings.

If the field disconnect is larger than 100A, it must be at-
tached to the unit using accessory CRDISBKT001A00 — dis-
connect switch bracket (see Fig. 41). Follow the instructions
provided with this accessory. For smaller field disconnects, be
sure to use 1/2 in. screws to mount the disconnect directly to the
end panel (see Fig. 42). In either case, set the disconnect verti-
cal location on the unit so that a 90 degree fitting can be used to
connect the conduit to the disconnect.
Fig. 41 — Mounting Position for Field Disconnects (over 100A)

Fig. 42 — Mounting Position for Field Disconnects (up to 100A)

ALL UNITS — Field power wires are connected to the unit at line-side pressure lugs on compressor contactor C and indoor fan contactor IFC (see wiring diagram label for control box component arrangement) or at factory-installed option non-fused disconnect switch. Max wire size is #2 AWG (copper only). See Fig. 37 and 38.

Refer to Table 7 for maximum wire size at connection lugs. Use copper wire only. See Fig. 37 and 38.

Table 7 — Connection Lug Min/Max Wire Sizes

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1 In Unit Control Box</td>
<td>#14</td>
<td>#1</td>
</tr>
<tr>
<td>80A Disconnect Option</td>
<td>#14</td>
<td>#4</td>
</tr>
<tr>
<td>100A Disconnect Option</td>
<td>#8</td>
<td>1/0</td>
</tr>
</tbody>
</table>

NOTE: TEST LEADS - Unit may be equipped with short leads (pigtails) on the field line connection points on contactor C or optional disconnect switch, see Fig. 37 and 38. These leads are for factory run-test purposes only; remove and discard before connecting field power wires to unit connection points. Make field power connections directly to line connection pressure lugs only.

WARNING

Failure to follow this warning could result in intermittent operation or performance satisfaction.

Do not connect aluminum wire between disconnect switch and 48TC unit. Use only copper wire. (See Fig. 43.)

Fig. 43 — Disconnect Switch and Unit

UNITS WITH FACTORY-INSTALLED NON-FUSED DISCONNECT — The factory-installed option non-fused disconnect (NFD) switch is located in a weatherproof enclosure located under the main control box. The manual switch handle and shaft are shipped in the disconnect enclosure. Assemble the shaft and handle to the switch at this point. Discard the factory test leads (see Fig. 44 and 45).

Connect field power supply conductors to LINE side terminals when the switch enclosure cover is removed to attach the handle.

Fig. 44 — Location of Non-Fused Disconnect Enclosure (Sizes 08-14)
Fig. 45 — Location of Non-Fused Disconnect Enclosure (Sizes 16)

To field install the NFD shaft and handle (see Fig. 46 or 47):

1. Remove the unit front panel (see Fig. 2-4 Unit Dimensional Drawings).
2. Remove (3) hex screws on the NFD enclosure - (2) on the face of the cover and (1) on the left side cover.
3. Remove the front cover of the NFD enclosure.
4. Make sure the NFD shipped from the factory is at OFF position (the arrow on the black handle knob is at OFF).
5. Insert the shaft with the cross pin on the top of the shaft in the horizontal position.
6. For sizes 08 to 14, measure from the tip of the shaft to the top surface of the black pointer; the measurement should be 3.75 to 3.88 in. (95 to 99 mm). For size 16, measure the tip of the shaft to the top surface of the pointer to be 3.75 to 3.88 in. (95 to 99 mm) for 80A and 100A NFD and 3.43 to 3.56 in. (87 to 90 mm) for 200A NFD.
7. Tighten the locking screw to secure the shaft to the NFD.
8. Turn the handle to the OFF position with red arrow pointing at OFF.
9. Install the handle on to the painted cover horizontally with the red arrow pointing to the left.
10. Secure the handle to the painted cover with (2) screws and lock washers supplied.
11. Engaging the shaft into the handle socket, re-install (3) hex screws on the NFD enclosure.
12. Re-install the unit front panel.

Fig. 46 — Handle and Shaft Assembly for NFD
(Sizes 08-14)

Fig. 47 — Handle and Shaft Assembly for NFD
(Size 16)

UNITS WITHOUT FACTORY-INSTALLED NON-FUSED DISCONNECT — When installing units, provide a disconnect switch per NEC (National Electrical Code) of adequate size. Disconnect sizing data is provided on the unit informative plate. Locate on unit cabinet or within sight of the unit per national or local codes. Do not cover unit informative plate if mounting the disconnect on the unit cabinet.

ALL UNITS — Field wiring must comply with NEC and all local codes. Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate. See Fig. 37 and 38 and the unit label diagram for power wiring connections to the unit power terminal blocks and equipment ground. Maximum wire size is #2 ga AWG per pole.

Provide a ground-fault and short-circuit over-current protection device (fuse or breaker) per NEC Article 440 (or local codes). Refer to unit informative data plate for MOCP (Maximum Over-current Protection) device size.

All units except 208/230-v units are factory wired for the voltage shown on the nameplate. If the 208/230-v unit is to be connected to a 208-v power supply, the control transformer must be rewired by moving the black wire with the 1/4-in. female spade connector from the 230-v connection and moving it...
to the 200-v 1/4-in. male terminal on the primary side of the transformer. Refer to unit label diagram for additional information.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the following formula to determine the percent of voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Carrier warranty.

NOTE: Check all factory and field electrical connections for tightness.

\[
\text{% Voltage Imbalance} = 100 \times \frac{\text{max voltage deviation from average voltage}}{\text{average voltage}}
\]

Example: Supply voltage is 230-3-60

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>224 v</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>231 v</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>226 v</td>
<td></td>
</tr>
</tbody>
</table>

Average Voltage = \(100 \times \frac{(224 + 231 + 226)}{3} = \frac{681}{3} = 227\)

Determine maximum deviation from average voltage.
(AB) 227-224 = 3 v
(BC) 231-227 = 4 v
(AC) 227-226 = 1 v

Maximum deviation is 4 v.

Determine percent of voltage imbalance.

\[
\text{% Voltage Imbalance} = 100 \times \frac{4}{227} = 1.78\%
\]

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

CONVENIENCE OUTLETS

WARNING

Failure to follow this warning could result in personal injury or death.

Units with convenience outlet circuits may use multiple disconnects. Check convenience outlet for power status before opening unit for service. Locate its disconnect switch, if appropriate, and open it. Lock-out and tag-out this switch, if necessary.

Two types of convenience outlets are offered on 48TC models: Non-powered and unit-powered. Both types provide a 125-volt GFCI (ground-fault circuit-interrupter) duplex receptacle rated at 15-A behind a hinged waterproof access cover, located on the end panel of the unit. See Fig. 48 and 49.

Fig. 48 — Convenience Outlet Location (Sizes 08-14)

Fig. 49 — Convenience Outlet Location (Sizes 16)

Installing Weatherproof Cover — A weatherproof cover is now required by UL standards for the factory-installed convenience outlets. This cover cannot be factory-mounted due its depth; it must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate.

On units with electro-mechanical controls the weatherproof cover kit is shipped in the unit’s control box. The kit includes the hinged cover, a backing plate and gasket. On units with a factory installed direct digital controller (PremierLink™ or RTU Open) the weatherproof cover kit is secured to the basepan underneath the control box. See Fig. 50.

Disconnect All Power To Unit and Convenience Outlet.

Lock-Out and Tag-Out All Power — Remove the blank cover plate at the convenience outlet; discard the blank cover.

Loosen the two screws at the GFCI duplex outlet, until approximately 1/2 in. (13 mm) under screw heads are exposed. Press the gasket over the screw heads. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket; tighten the two screws until snug (do not over-tighten).

Mount the weatherproof cover to the backing plate as shown in Fig. 50. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover. Check for full closing and latching.
Fig. 50 — Weatherproof Cover Installation

Non-powered type — Requires the field installation of a general-purpose 125-volt 15-A circuit powered from a source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

Unit-powered type — A unit-mounted transformer which is factory-installed to step-down the main power supply voltage to the unit to 115-v at the duplex receptacle. This option also includes a manual switch with fuse, located in a utility box and mounted on a bracket behind the convenience outlet; access is through the unit’s control box access panel. See Fig. 48 and 49.

The primary leads to the convenience outlet transformer are not factory-connected. Selection of primary power source is a customer-option. If local codes permit, the transformer primary leads can be connected at the line-side terminals on the unit-mounted non-fused disconnect or HACR breaker switch; this will provide service power to the unit when the unit disconnect switch or HACR switch is open. Other connection methods will result in the convenience outlet circuit being de-energized when the unit disconnect or HACR switch is open. See Fig. 51.

On a unit without a unit-mounted disconnect, connect the source leads to the main terminal block (TB1 for sizes 08-14, TB3 for size 16).

On size 16 units, if the convenience outlet transformer is connected to the line side of a field disconnect, the conduit provided with the unit must be used to protect the wire as it is routed from the transformer to the field disconnect. The end of the conduit with the straight connector attaches to the field disconnect. The other end does not need to connect to the transformer; however, the conduit must be routed so that all wiring is either in the conduit or behind the access panel.

On size 16 units, if the convenience outlet transformer is connected to the line side of the factory disconnect option, route the wires through the web bushing located on the bottom of the disconnect box. For the load side wiring to the factory option disconnect, route the wires through the hole on the right side of the disconnect. Be sure to create a drip loop at least 6 in. long.

ALL UNITS — Test the GFCI receptacle by pressing the TEST button on the face of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Unit-mounted convenience outlets — Outlets will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energized is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

Fig. 51 — Powered Convenience Outlet Wiring

Fuse on power type — The factory fuse is a Bussman “Fuse-tron” T-15, non-renewable screw-in (Edison base) type plug fuse. See Fig. 52 for maximum continuous use amp limitations.

Fig. 52 — Convenience Outlet Utilization Notice

FACTORY-OPTION THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS) (SIZE 08-14) — This service connection kit consists of a 1/2-in. NPT gas adapter fitting (brass), a 1/2 in. electrical bulkhead connector and a 3/4-in. electrical bulkhead connector, all factory-installed in the embossed (raised) section of the unit basepan in the condenser section. The 3/4 in. bulkhead connector enables the low-voltage control wires to pass through the basepan. The 1/2 in. electrical bulkhead connector allows the high-voltage power wires to pass through the basepan. See Fig. 26.

Check tightness of connector lock nuts before connecting electrical conduits.

Field-supplied and field-installed liquid tight conduit connectors and conduit may be attached to the connectors on the basepan. Pull correctly rated high voltage and through appropriate conduits. Connect the power conduit to the internal disconnect (if unit is so equipped) or to the external disconnect (through unit side panel). A hole must be field cut in the main control box bottom on the left side so the 24-v control connections can be made. Connect the control power conduit to the unit control box at this hole.
Units Without Thru-Base Connections
1. Install power wiring conduit through side panel openings. Install conduit between disconnect and control box.
2. Install power lines to terminal connections as shown in Fig. 51.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula on page 27 to determine the percent of voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Carrier warranty.

Field Control Wiring — The 48TC unit requires an external temperature control device. This device can be a thermostat (field-supplied) or a PremierLink controller (available as factory-installed option or as field-installed accessory, for use on a Carrier Comfort Network® or as a stand alone control) or the RTU Open Controller for Building Management Systems using non-CCN protocols (RTU Open is available as a factory-installed option only).

Thermostat — Install a Carrier-approved accessory 2-stage thermostat according to installation instructions included with the accessory. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions. If the thermostat contains a logic circuit requiring 24-v power, use a thermostat cable or equivalent single leads of different colors with minimum of seven leads (see Fig. 53). If the thermostat does not require a 24-v source (no “C” connection required), use a thermostat cable or equivalent with minimum of six leads. Check the thermostat installation instructions for additional features which might require additional conductors in the cable. For wire runs up to 50 ft. (15 m), use no. 18 AWG (American Wire Gage) insulated wire [35 C (95 F) minimum]. For 50 to 75 ft. (15 to 23 m), use no. 16 AWG insulated wire [35 C (95 F) minimum]. For over 75 ft. (23 m), use no. 14 AWG insulated wire [35 C (95 F) minimum]. All wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

Fig. 53 — Low-Voltage Connections

Unit Without Thru-Base Connection Kit — Pass the thermostat control wires through the hole provided in the corner post; then feed the wires through the raceway built into the corner post to the control box. Pull the wires over to the terminal strip on the upper-left corner of the Controls Connection Board. See Fig. 54.

NOTE: If thru-the-bottom connections accessory is used, refer to the accessory installation instructions for information on routing power and control wiring.
FACTORY-OPTION THRU-BASE CONNECTIONS (ELECTRICAL CONNECTIONS) (SIZE 16) — This service connection kit consists of a 1/2 in. electrical bulkhead connector and a 1 1/2 in. electrical bulkhead connector, connected to an “L” bracket covering the embossed (raised) section of the unit basepan in the condenser section. See Fig. 55. The 1/2 in. bulkhead connector enables the low-voltage control wires to pass through the basepan. The 1 1/2 in. electrical bulkhead connector allows the high-voltage power wires to pass through the basepan.

1. Remove the “L” bracket assembly from the unit.
2. Remove connector plate assembly from the “L” bracket and discard the “L” bracket, but retain the washer head screws and the gasket (located between the “L” bracket and the connector plate assembly).

NOTE: Take care not to damage the gasket, as it is reused in the following step.

3. Place the gasket over the embossed area in the basepan, aligning the holes in the gasket to the holes in the basepan. See Fig. 56.
4. Install the connector plate assembly to the basepan using 8 of the washer head screws.

NOTE: If electrical connections are not going to occur at this time, tape or otherwise cover the fittings so that moisture does not get into the building or conduit in the interim.

Check tightness of connector lock nuts before connecting electrical conduits.

Field-supplied and field-installed liquid tight conduit connectors and conduit may be attached to the connectors on the basepan. Pull correctly rated high voltage and through appropriate conduits. Connect the power conduit to the internal disconnect (if unit is so equipped) or to the external disconnect (through unit side panel). A hole must be field cut in the main control box bottom on the left side so the 24-v control connections can be made.

Connect the control power conduit to the unit control box at this hole.

Units Without Thru-Base Connections

1. Install power wiring conduit through side panel openings. Install conduit between disconnect and control box.
2. Install power lines to terminal connections as shown in Fig. 38.

Field Control Wiring — The 48TC**16 requires an external temperature control device. This device can be a thermostat (field-supplied) or a PremierLink™ controller (available as factory-installed option or as field-installed accessory, for use on a Carrier Comfort Network® or as a stand alone control) or the RTU Open Controller for Building Management Systems using non-CCN protocols (RTU Open is available as a factory-installed option only).

Thermostat — Install a Carrier-approved accessory 2 stage Cooling/Heating thermostat according to installation instructions included with the accessory. If using an electronic thermostat, configure it for “non-heat pump” operation. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions.

If the thermostat contains a logic circuit requiring 24-v power, use a thermostat cable or equivalent single leads of different colors with minimum of seven leads. If the thermostat does not require a 24-v source (no “C” connection required), use a thermostat cable or equivalent with minimum of six leads. Check the thermostat installation instructions for additional features which might require additional conductors in the cable. For wire runs up to 50 ft. (15 m), use no. 18 AWG (American Wire Gage) insulated wire 95 F (35 C minimum).

For 50 to 75 ft. (15 to 23 m), use no. 16 AWG insulated wire (35 C minimum). For over 75 ft. (23 m), use no. 14 AWG insulated wire (35 C minimum). All wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

Unit without Thru-Base Connection Kit — Pass the thermostat control wires through the bushing on the unit end panel. Route the wire through the snap-in wire tie and up to the web bushing near the control box. Route the wire through the bushing and into the bottom left side of the control box after removing one of the two knockouts in the corner of the box. Use a connector at the control box to protect the wire as it passes into the control box. Pull the wires over to the terminal strip at the upper left corner of the Central Terminal Board (CTB). Use the connector at the control box and the wire tie to take up any slack in the thermostat wire to ensure that it will not be damaged by contact with the condenser coil. See Fig. 57.
Fig. 57 — Thermostat Wire Routing

NOTE: If thru-the-bottom connections accessory is used, refer to the accessory installation instructions for information on routing power and control wiring.

Heat Anticipator Settings — Set heat anticipator settings at 0.14 amp for the first stage and 0.14 amp for second-stage heating, when available.

HUMIDI-MIZER® CONTROL CONNECTIONS

Humidi-Mizer – Space RH Controller
NOTE: The Humidi-Mizer is a factory installed option.

The Humidi-Mizer dehumidification system requires a field-supplied and installed space relative humidity control device. This device may be a separate humidistat control (contact closes on rise in space RH above control setpoint) or a combination thermostat-humidistat control device such as Carrier’s Edge® Pro Thermidistat with isolated contact set for dehumidification control, see Fig. 58 and 59. The humidistat is normally used in applications where a temperature control is already provided (units with PremierLink™ control).

To Connect the Carrier Humidistat (HL38MG029) for Sizes 08-14:
1. Route the humidistat 2-conductor cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 54) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. Use wire nuts to connect humidistat cable to two PINK leads in the low-voltage wiring as shown in Fig. 60.

To Connect the Carrier Humidistat (HL38MG029) for Size 16:
1. Route the humidistat 2-conductor cable (field-supplied) through the bushing the unit’s louvered end panel.
2. Route the cable through the snap-in wire tie and up to the web bushing near the control box.
3. Feed the cable through the bushing and into the bottom left side of the control box after removing one of the two knockouts in the corner of the box. Use a connector to protect the cable as it enters the control box.
4. Use the connector and the wire tie to reduce any slack in the humidistat cable to ensure that it will not be damaged by contact with the condenser coil.
5. Use wire nuts to connect humidistat cable to two PINK leads in the low-voltage wiring as shown in Fig. 61.

To connect the Thermidistat device (33CS2PPRH-01) for Size 08-14:
1. Route the Thermidistat multi-conductor thermostat cable (field-supplied) through the hole provided in the unit corner post.
2. Feed wires through the raceway built into the corner post (see Fig. 54) to the 24-v barrier located on the left side of the control box. The raceway provides the UL-required clearance between high-voltage and low-voltage wiring.
3. The Thermidistat has dry contacts at terminals D1 and D2 for dehumidification operation (see Fig. 62). The dry contacts must be wired between CTB terminal R and the PINK lead to the LTLO switch with field-supplied wire nuts. Refer to the installation instructions included with the Carrier Edge Thermidistat device for more information.

To connect the Thermidistat device (33CS2PPRH-01) for Size 16:
1. Route the Thermidistat multi-conductor thermostat cable (field-supplied) through the bushing the unit’s louvered end panel.
2. Route the cable through the snap-in wire tie and up to the web bushing near the control box.
3. Feed the cable through the bushing and into the bottom left side of the control box after removing one of the two knockouts in the corner of the box. Use a connector to protect the cable as it enters the control box.
4. Use the connector and the wire tie to reduce any slack in the thermostat cable to ensure that it will not be damaged by contact with the condenser coil.
5. The Thermidistat has dry contacts at terminals D1 and D2 for dehumidification operation (see Fig. 62). The dry contacts must be wired between CTB terminal R and the PINK lead to the LTLO switch with field-supplied wire nuts. Refer to the installation instructions included with the Carrier Edge Thermidistat device for more information.
Low Ambient Control (Factory Option) — If the unit comes with Electro-Mechanical (EM) control, then no adjustment is necessary. If the unit comes with PremierLink™ or RTU Open control option, then refer to its installation control manual for details on adjusting “Cooling Lock-Out” setting and configure for your specific job requirements.
Fig. 60 — 48TC**08-14, Typical Humidi-MiZer® Adaptive Dehumidification System Humidistat Wiring
Fig. 61 — 48TC**16, Typical Humidi-MiZer® Adaptive Dehumidification System Humidistat Wiring
Fig. 62 — 48TC**08-16 Unit with Humidi-MiZer Adaptive Dehumidification System with Edge® Pro Thermidistat Device

*Connection not required.
EconoMiSer® X (Factory-Installed Option)

PRODUCT DESCRIPTION — The EconoMiSer X system is an expandable economizer control system, which includes a W7220 economizer module (controller) with an LCD and keypad (See Fig. 63). The W7220 can be configured with optional sensors.

Fig. 63 — W7220 Economizer Module

The W7220 economizer module can be used as a stand-alone economizer module wired directly to a commercial setback space thermostat and sensors to provide outside air dry-bulb economizer control.

The W7220 economizer module can be connected to optional sensors for single or differential enthalpy control. The W7220 economizer module provides power and communications for the sensors.

The W7220 economizer module automatically detects sensors by polling to determine which sensors are present. If a sensor loses communications after it has been detected, the W7220 economizer controller indicates a device fail error on its LCD.

SYSTEM COMPONENTS — The EconoMiSer X system includes an economizer module, 20k mixed air sensor, damper actuator, and either a 20k outdoor air temperature sensor or S-Bus enthalpy sensors.

Economizer Module — The module is the core of the EconoMiSer X system. The module is mounted in the unit’s control box, and includes the user interface for the system. The W7220 economizer module provides the basic inputs and outputs to provide simple economizer control. When used with the optional sensors, the economizer module provides more advanced economizer functionality.

S-Bus Enthalpy Control Sensors — The sensor is a combination temperature and humidity sensor which is powered by and communicates on the S-Bus. Up to three sensors may be configured with the W7220 economizer module.

CO₂ Sensor (optional) — The sensor can be added for Demand Controlled Ventilation (DCV).

SPECIFICATIONS

W7220 Economizer Module — The module is designed for use with 2 to 10 Vdc or bus communicating actuator. The module includes terminals for CO₂ sensor, Mixed Air sensor, and an Outdoor Dry Bulb sensor. Enthalpy and other options are available with bus sensors.

User Interface — Provides status for normal operation, setup parameters, checkout tests, and alarm and error conditions with a 2-line 16 character LCD display and four button keypad.

Electrical
Rated Voltage — 20 to 30 Vac RMS, 50/60 Hz

Transformer — 100 va maximum system input
Nominal Power Consumption (at 24 Vac, 60 Hz) — 11.5 VA without sensors or actuators
Relay Digital Output Rating at 30 Vac (maximum power from Class 2 input only) — 1.5A run:
3.5A inrush at 0.45PF (200,000 cycles) or
7.5A inrush at 0.45PF (100,000 cycles)
External Sensors Power Output — 21 Vdc ± 5% at 48mA

IMPORTANT: All inputs and outputs must be Class 2 wiring.

INPUTS
Sensors
NOTE: A Mixed Air (MA) analog sensor is required on all W7220 units; either an Outdoor Air (OA) sensor for dry bulb changeover or an OA bus sensor for outdoor enthalpy changeover is required in addition to the MA sensor. An additional Return Air (RA) bus sensor can be added to the system for differential enthalpy or dry bulb changeover. For differential dry bulb changeover a 20k ohm sensor is required in the OA and a bus sensor in the RA. DIP switch on RA bus sensor must be set in the RA position.

Dry Bulb Temperature (optional) and Mixed Air (required), 20k NTC
2-wire (18 to 22 AWG);
Temperature range -40 to 150 F (-40 to 65 C)
Temperature accuracy -0 F/+2 F

Temperature and Humidity, C7400S1000 (optional)
S-Bus; 2-wire (18 to 22 AWG)
Temperature: range -40 to 150 F (-40 to 65 C)
Temperature accuracy -0 F/+2 F
Humidity: range 0 to 100% RH with 5% accuracy.

NOTE: Up to three (3) S-Bus sensors may be connected to the W7220 economizer module. For outdoor air (OA), return air (RA) and discharge (supply) air (DA).

4 Binary Inputs — 1-wire 24 Vac + common GND (see page 38 for wiring details).

24 Vac power supply — 20 to 30 Vac 50/60Hz; 100 VA Class 2 transformer.

OUTPUTS
Actuator Signal: 2-10 Vdc; minimum actuator impedance is 2k ohm; bus two-wire output for bus communicating actuators.

Exhaust fan, Y1, Y2 and AUX1 O:
All Relay Outputs (at 30 Vac):
Running: 1.5A maximum
Inrush: 7.5A maximum

ENVIRONMENTAL

Operating Temperature:
-40 to 150 F (-40 to 65 C).
Exception of display operation down to -4 F with full recovery at -4 F from exposure to -40 F

Storage Temperature:
-40 to 150 F (-40 to 65 C)

Shipping Temperature:
-40 to 150 F (-40 to 65 C)

Relative Humidity:
5% to 95% RH non-condensing
ECONOMIZER MODULE WIRING DETAILS — Use Fig. 64 and Tables 8 and 9 to locate the wiring terminals for the Economizer module.

NOTE: The four terminal blocks are removable. You can slide out each terminal block, wire it, and then slide it back into place.

Table 8 — Economizer Module - Left Hand Terminal Blocks

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT MAT</td>
<td>20k NTC and COM</td>
<td>Mixed Air Temperature Sensor (Polarity Insensitive Connection)</td>
</tr>
<tr>
<td>OAT OAT</td>
<td>20k NTC and COM</td>
<td>Outdoor Air Temperature Sensor (Polarity Insensitive Connection)</td>
</tr>
<tr>
<td>S-BUS S-BUS (Sylk* Bus)</td>
<td>S-BUS</td>
<td>Enthalpy Control Sensor (Polarity Insensitive Connection)</td>
</tr>
</tbody>
</table>

Bottom Left Terminal Block

<table>
<thead>
<tr>
<th>LABEL</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAQ 2-10</td>
<td>2-10 vdc</td>
<td>Air Quality Sensor Input (e.g. CO₂ sensor)</td>
</tr>
<tr>
<td>IAQ COM</td>
<td>COM</td>
<td>Air Quality Sensor Common</td>
</tr>
<tr>
<td>IAQ 24V</td>
<td>24 vac</td>
<td>Air Quality Sensor 24 vac Source</td>
</tr>
<tr>
<td>ACT 2-10</td>
<td>2-10 vdc</td>
<td>Damper Actuator Output (2-10 vdc)</td>
</tr>
<tr>
<td>ACT COM</td>
<td>Damper Actuator Output Common</td>
<td></td>
</tr>
<tr>
<td>ACT 24v</td>
<td>24 vac</td>
<td>Damper Actuator 24 vac Source</td>
</tr>
</tbody>
</table>

*Sylk is a trademark of Honeywell International Inc.

S-BUS SENSOR WIRING — The labels on the sensors and controller are color coded for ease of installation. Orange labeled sensors can only be wired to orange terminals on the controller. Brown labeled sensors can only be wired to S-bus (brown) terminals. Use Fig. 65 and Table 10 to locate the wiring terminals for each S-Bus sensor.

Use Fig. 65 and Table 10 to locate the wiring terminals for each enthalpy control sensor.
Table 10 — HH57AC081 Sensor Wiring Terminations

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
<tr>
<td>2</td>
<td>S-BUS</td>
<td>S-BUS Communications (Enthalpy Control Sensor Bus)</td>
</tr>
</tbody>
</table>

Use Fig. 65 and Table 11 to set the DIP switches for the desired use of the sensor.

Table 11 — HH57AC081 Sensor DIP Switch

<table>
<thead>
<tr>
<th>USE</th>
<th>DIP SWITCH POSITIONS FOR SWITCHES 1, 2, AND 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DA</td>
<td>OFF</td>
</tr>
<tr>
<td>RA</td>
<td>ON</td>
</tr>
<tr>
<td>OA</td>
<td>OFF</td>
</tr>
</tbody>
</table>

NOTE: When a S-Bus sensor is connected to an existing network, it will take 60 minutes for the network to recognize and auto-configure itself to use the new sensor.

During the 60 minute setup period, no alarms for sensor failures (except SAT) will be issued and no economizing function will be available.

CO2 SENSOR WIRING — When using a CO2 sensor the black and brown common wires are internally connected and only one is connected to “IAQ COM” on the W7220. Use the power from the W7220 to power the CO2 sensor OR make sure the ground for the power supplies are common. See Fig. 66 for CO2 sensor wiring.

Fig. 66 — CO2 Sensor Wiring

INTERFACE OVERVIEW — This section describes how to use the Economizer’s user interface for:
- Keypad and menu navigation
- Settings and parameter changes
- Menu structure and selection

USER INTERFACE — The user interface consists of a 2-line LCD display and a 4-button keypad on the front of the economizer controller.

KEYPAD — The four navigation buttons (see Fig. 67) are used to scroll through the menus and menu items, select menu items, and to change parameter and configuration settings.

To use the keypad when working with menus:
- Press the ▲ (Up arrow) button to move to the previous menu.
- Press the ▼ (Down arrow) button to move to the next menu.
- Press the (Enter) button to display the first item in the currently displayed menu.

Fig. 67 — W7220 Controller Navigation Buttons

Press the (Menu Up/Exit) button to exit a menu’s item and return to the list of menus. To use the keypad when working with Setpoints, System and Advanced Settings, Checkout tests and Alarms:
1. Navigate to the desired menu.
2. Press the (Enter) button to display the first item in the currently displayed menu.
3. Use the ▲ and ▼ buttons to scroll to the desired parameter.
4. Press the (Enter) button to display the value of the currently displayed item.
5. Press the ▲ button to increase (change) the displayed parameter value.
6. Press the ▼ button to decrease (change) the displayed parameter value.

NOTE: When values are displayed, pressing and holding the ▲ or ▼ button causes the display to automatically increment.
7. Press the (Enter) button to accept the displayed value and store it in nonvolatile RAM.
8. “CHANGE STORED” displays.
9. Press the (Enter) button to return to the current menu parameter.
10. Press the (Menu Up/Exit) button to return to the previous menu.

MENU STRUCTURE — Table 12 illustrates the complete hierarchy of menus and parameters for the EconoMiSer® X system.

The Menus in display order are:
- STATUS
- SETPOINTS
- SYSTEM SETUP
- ADVANCED SETUP
- CHECKOUT
- ALARMS

IMPORTANT: Table 12 illustrates the complete hierarchy. Your menu parameters may be different depending on your configuration.

For example if you do not have a DCV (CO2) sensor, then none of the DCV parameters appear and only MIN POS will display. If you have a CO2 sensor, the DCV MIN and DCV MAX will appear AND if you have 2 speed fan DCV MIN (high and low speed) and DCV MAX (high and low speed will appear).
NOTE: Some parameters in the menus use the letters MA or MAT, indicating a mixed air temperature sensor location before the cooling coil. This unit application has the control sensor located after the cooling coil, in the fan section, where it is designated as (Cooling) Supply Air Temperature or SAT sensor.

SETUP AND CONFIGURATION — Before being placed into service, the W7220 Economizer module must be setup and configured for the installed system.

The setup process uses a hierarchical menu structure that is easy to use. Press the ▲ and ▼ arrow buttons to move forward and backward through the menus and press the button to select and confirm setup item changes.

TIME-OUT AND SCREENSAVER — When no buttons have been pressed for 10 minutes, the LCD displays a screen saver, which cycles through the Status items. Each Status item displays in turn and cycles to the next item after 5 seconds.

IMPORTANT: During setup, the economizer module is live at all times.

<table>
<thead>
<tr>
<th>Table 12 — Menu Structure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
</tr>
<tr>
<td>ECONO AVAIL</td>
</tr>
<tr>
<td>ECONOMIZING</td>
</tr>
<tr>
<td>OCCUPIED</td>
</tr>
<tr>
<td>COOL Y1—OUT</td>
</tr>
<tr>
<td>HEAT PUMP</td>
</tr>
<tr>
<td>COOL Y1—IN</td>
</tr>
<tr>
<td>COOL Y2—OUT</td>
</tr>
<tr>
<td>MA TEMP</td>
</tr>
<tr>
<td>DA TEMP</td>
</tr>
<tr>
<td>OA TEMP</td>
</tr>
<tr>
<td>OA HUM</td>
</tr>
<tr>
<td>RA TEMP</td>
</tr>
<tr>
<td>RA HUM</td>
</tr>
<tr>
<td>IN CO2</td>
</tr>
<tr>
<td>DCV STATUS</td>
</tr>
<tr>
<td>DAMPER OUT</td>
</tr>
<tr>
<td>ACT POS</td>
</tr>
<tr>
<td>MENU</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>STAT</td>
</tr>
<tr>
<td>ACT</td>
</tr>
</tbody>
</table>
| STAT | EXH1 OUT | OFF | ON/OFF (on EXH1 menu) | EXHAUST STAGE 1 RELAY OUTPUT
Output of EXH1 terminal:
ON = relay closed
OFF = relay open |
| STAT | EXH2 OUT | OFF | ON/OFF | EXHAUST STAGE 2 RELAY OUTPUT
Output of AUX terminal; displays only if AUX = EXH2 |
| STAT | ERV | OFF | ON/OFF | ENERGY RECOVERY VENTILATOR
Output of AUX terminal; displays only if AUX = ERV |
| STAT | MECH COOL | 0 | 0, 1, or 2 | Displays stage of mechanical cooling that is active.
Displays the stage of heat pump heating that is active. |
| STAT | FAN SPEED | N/A | LOW or HIGH | Displays speed setting of fan on a 2-speed fan unit. |
| STAT | W (HEAT ON)| N/A | ON/OFF | HEAT DEMAND STATUS
Displays status of heat demand on a 2-speed fan unit. |
| SET | MAT SET | 53F | 38 to 65 F; increment by 1 | SUPPLY AIR SETPOINT
Setpoint determines where the economizer will modulate the OA damper to maintain the mixed air temperature. |
| SET | LOW T LOCK| 32F | -45 to 80 F; increment by 1 | COMPRESSOR LOW TEMPERATURE LOCKOUT
Setpoint determines outdoor temperature when the mechanical cooling cannot be turned on. Commonly referred to as the Compressor lockout. |
| SET | DRYBLB SET| 63F | 48 to 80 F; increment by 1 | OA DRY BULB TEMPERATURE CHANGEOVER SETPOINT
Setpoint determines where the economizer will assume outdoor air temperature is good for free cooling; e.g., at 63 F unit will economize at 62 F and below and not economize at 64 F and above. There is a 2 F deadband. |
| SET | ENTH CURVE| ES3 | ES1, ES2, ES3, ES4, or ES5 | ENTHALPY CHANGEOVER CURVE
Enthalpy boundary “curves” for economizing using single enthalpy. |
| SET | DCV SET | 1100ppm | 500 to 2000ppm; increment by 100 | DEMAND CONTROLLED VENTILATION
Displays only if CO2 sensor is connected. Setpoint for Demand Control Ventilation of space. Above the setpoint, the OA dampers will modulate open to bring in additional OA to maintain a space ppm level below the setpoint. |
| SET | MIN POS | 2.8 V | 2 to 10 Vdc | VENTILATION MINIMUM POSITION
Displays only if a CO2 sensor is NOT connected. |
| SET | VENTMAX | 2.8 V | 2 to 10 Vdc | DCV MAXIMUM DAMPER POSITION
Displays only if a CO2 sensor is connected. Used for Vbz (ventilation max cfm) setpoint. Displays 2 to 10 V if <3 sensors (RA, OA, and MA). In AUTO mode dampers controlled by CFM. |
| SET | VENTMIN | 2.25 V | 2 to 10 Vdc or 100 to 9990 cfm; increment by 10 | DCV MINIMUM DAMPER POSITION
Displays only if a CO2 sensor is connected. Used for Va (ventilation min cfm) setpoint. Displays 2 to 10 V if <3 sensors (RA, OA, and MA). Va is only set if DCV is used. This is the ventilation for less than maximum occupancy of the space. In AUTO mode dampers controlled by CFM. |
| SET | ERV OAT SP†† | 32°F | 0 to 50 F; increment by 1 | ENERGY RECOVERY VENTILATOR UNIT OUTDOOR AIR TEMPERATURE SETPOINT
Only when AUX1 O = ERV |
| SET | EXH1 SET | 50% | 0 to 100%; increment by 1 | EXHAUST FAN STAGE 1 SETPOINT
Setpoint for OA damper position when exhaust fan 1 is powered by the economizer. With 2-speed fan units Exh1 L (low speed fan) and Exh1 H (high speed fan) settings are required. Default for Exh1 L is 65% and Exh1 H is 50% |
| SET | EXH2 SET | 75% | 0 to 100%; increment by 1 | EXHAUST FAN STAGE 2 SETPOINT
Setpoint for OA damper position when exhaust fan 2 is powered by the economizer. Only used when AUX1 O is set to EXH2. With 2-speed fan units Exh2 L (low speed fan) and Exh2 H (high speed fan) settings are required. Default for Exh2 L is 80% and Exh2 H is 75% |
<table>
<thead>
<tr>
<th>SYSTEM SETUP</th>
<th>ADVANCED SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALL</td>
<td>FAN SPEED</td>
</tr>
<tr>
<td>01/01/10</td>
<td>2 speed</td>
</tr>
<tr>
<td>N/A</td>
<td>1 speed/2 speed</td>
</tr>
<tr>
<td>Display order = MM/DD/YY</td>
<td>Sets the economizer controller for operation of 1 speed or 2 speed supply fan</td>
</tr>
<tr>
<td>Setting order = DD, MM, then YY.</td>
<td>NOTE: 2-speed fan option also needs Heat (W1) programmed in AUX 2 In. See Menu Note 4.</td>
</tr>
<tr>
<td>UNITS DEG</td>
<td>EQUIPMENT</td>
</tr>
<tr>
<td>F</td>
<td>CONV</td>
</tr>
<tr>
<td>F or C</td>
<td>Conventional or HP</td>
</tr>
<tr>
<td>Sets economizer controller in degrees Fahrenheit or Celsius</td>
<td>CONV = conventional; HP O/B = Enable Heat Pump mode. Use AUX2 I for Heat Pump input from thermostat or controller. See Menu Note 4.</td>
</tr>
<tr>
<td>AUX2 IN</td>
<td>FAN SPEED</td>
</tr>
<tr>
<td>W</td>
<td>SD/W or HP(O)/HP(B)</td>
</tr>
<tr>
<td>In CONV mode: SD + Enables configuration of shutdown (default); W = informs controller that system is in heating mode. NOTE: If using 2-speed fan mode, you must program CONV mode for W. Shutdown is not available in 2-speed fan mode. See Menu Note 4. In HP O/B mode: HP(O) = energize heat pump on Cool (default); HP(B) = energize heat pump on heat.</td>
<td></td>
</tr>
<tr>
<td>FAN CFM</td>
<td>AUX1 OUT</td>
</tr>
<tr>
<td>5000cfm</td>
<td>NONE</td>
</tr>
<tr>
<td>100 to 15000 cfm; increment by 100</td>
<td>NONE = not configured (output is not used)</td>
</tr>
<tr>
<td>UNIT DESIGN AIRFLOW (CFM)</td>
<td>ERV</td>
</tr>
<tr>
<td>The value is found on the nameplate label for the specific unit.</td>
<td>ERV = Energy Recovery Ventilator††</td>
</tr>
<tr>
<td>OCC</td>
<td>FREEZE POS</td>
</tr>
<tr>
<td>INPUT</td>
<td>CLO</td>
</tr>
<tr>
<td>INPUT or ALWAYS</td>
<td>CLO or MIN</td>
</tr>
<tr>
<td>OCCUPIED MODE BY EXTERNAL SIGNAL</td>
<td>FREEZE PROTECTION DAMPER POSITION</td>
</tr>
<tr>
<td>When using a setback thermostat with occupancy out (24 vac), the 24 vac is input "INPUT" to the OCC terminal. If no occupancy output from the thermostat then change program to "ALWAYS" OR add a jumper from terminal R to OCC terminal.</td>
<td>Damper position when freeze protection is active (closed or MIN POS).</td>
</tr>
<tr>
<td>FACTORY DEFAULT</td>
<td>CO2 ZERO</td>
</tr>
<tr>
<td>NO</td>
<td>0 ppm</td>
</tr>
<tr>
<td>NO or YES</td>
<td>0 to 500 ppm; increment by 10</td>
</tr>
<tr>
<td>Resets all set points to factory defaults when set to YES. LCD will briefly flash YES and change to NO but all parameters will change to the factory default values. NOTE: RECHECK AUX2 IN and FANTYPE for required 2-speed values.</td>
<td>CO2 ppm level to match CO2 sensor start level.</td>
</tr>
<tr>
<td>MALO SET</td>
<td>CO2 SPAN</td>
</tr>
<tr>
<td>45°F</td>
<td>2000ppm</td>
</tr>
<tr>
<td>35 to 55 F; Incremented by 10</td>
<td>1000 to 3000 ppm; Increment by 10</td>
</tr>
<tr>
<td>SUPPLY AIR TEMPERATURE LOW LIMIT</td>
<td>CO2 ppm span to match CO2 sensor.</td>
</tr>
<tr>
<td>When using a setback thermostat with occupancy out (24 vac), the 24 vac is input "INPUT" to the OCC terminal. If no occupancy output from the thermostat then change program to "ALWAYS" OR add a jumper from terminal R to OCC terminal.</td>
<td>STG3 DLY</td>
</tr>
<tr>
<td>2.0h</td>
<td>2.0h</td>
</tr>
<tr>
<td>0 min, 5 min, 15 min, then 15 min intervals. Up to 4 hrs or OFF</td>
<td>COOLING STAGE 3 DELAY</td>
</tr>
<tr>
<td>Cooling after stage 2 cool has been active. Turns on 2nd stage of cooling when economizer is 1st stage and mechanical cooling is 2nd stage. Allows three stages of cooling, 1 economizer and 2 mechanical. OFF = no Stage 3 cooling</td>
<td></td>
</tr>
<tr>
<td>SD DMPR POS</td>
<td>DA LO ALM</td>
</tr>
<tr>
<td>CLO</td>
<td>45 F (7 C)</td>
</tr>
<tr>
<td>CLO or OPN</td>
<td>35 to 65 F; (2 to 18 C) Incremented by 5 deg.</td>
</tr>
<tr>
<td>Indicates shutdown signal from space thermostat or unitary controller. When controller receives 24 Vac input on the SD terminal in conventional mode, the OA damper will open if programmed for OPN and OA damper will close if programmed for CLO. All other controls, e.g., fans, etc. will shut off.</td>
<td>Used for alarm when the DA air temperature is too low. Set lower range of alarm, below this temperature the alarm will show on the display.</td>
</tr>
<tr>
<td>DA HI ALM</td>
<td>DCVCAL ENA</td>
</tr>
<tr>
<td>80 F (27 C)</td>
<td>MAN</td>
</tr>
<tr>
<td>70 to 180 F; (21 to 82 C) Incremented by 5 deg.</td>
<td>MAN (manual) AUTO</td>
</tr>
<tr>
<td>Used for alarm when the DA air temperature is too high. Set upper range of alarm, above this temperature the alarm will show on the display.</td>
<td>Turns on the DCV automatic control of the dampers. Resets ventilation based on the RA, OA, and MA sensor conditions. Requires all 3 RA, OA, and MA sensors.</td>
</tr>
<tr>
<td>MENU</td>
<td>PARAMETER</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ADVANCED SETUP (CONT)</td>
<td>MAT T CAL</td>
</tr>
<tr>
<td></td>
<td>OAS T CAL</td>
</tr>
<tr>
<td></td>
<td>OA H CAL</td>
</tr>
<tr>
<td></td>
<td>RA T CAL</td>
</tr>
<tr>
<td></td>
<td>RA H CAL</td>
</tr>
<tr>
<td></td>
<td>DA T CAL</td>
</tr>
<tr>
<td></td>
<td>2SP FAN DELAY</td>
</tr>
<tr>
<td>CHECKOUT</td>
<td>DAMPER MINIMUM POSITION</td>
</tr>
<tr>
<td></td>
<td>DAMPER OPEN</td>
</tr>
<tr>
<td></td>
<td>DAMPER CLOSE</td>
</tr>
<tr>
<td></td>
<td>CONNECT Y1–O</td>
</tr>
<tr>
<td></td>
<td>CONNECT Y2–O</td>
</tr>
<tr>
<td></td>
<td>CONNECT AUX1–O</td>
</tr>
<tr>
<td></td>
<td>CONNECT EXH1</td>
</tr>
<tr>
<td>ALARMS</td>
<td>MA T SENS ERR</td>
</tr>
<tr>
<td></td>
<td>CO2 SENS ERR</td>
</tr>
<tr>
<td></td>
<td>OA SYLK T ERR</td>
</tr>
<tr>
<td></td>
<td>OA SYLK H ERR</td>
</tr>
<tr>
<td></td>
<td>RA SYLK T ERR</td>
</tr>
<tr>
<td></td>
<td>RA SYLK H ERR</td>
</tr>
<tr>
<td></td>
<td>DA SYLK T ERR</td>
</tr>
<tr>
<td></td>
<td>OA SENS T ERR</td>
</tr>
<tr>
<td></td>
<td>ACT ERROR</td>
</tr>
<tr>
<td></td>
<td>FREEZE ALARM</td>
</tr>
</tbody>
</table>
Table 12 — Menu Structure* (cont)

<table>
<thead>
<tr>
<th>MENU</th>
<th>PARAMETER</th>
<th>PARAMETER DEFAULT VALUE</th>
<th>PARAMETER RANGE AND INCORRNT</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARMS (CONT)</td>
<td>SHUTDOWN ACTIVE</td>
<td>N/A</td>
<td>N/A</td>
<td>AUX2 IN is programmed for SHUTDOWN and 24 V has been applied to AUX2 IN terminal.</td>
</tr>
<tr>
<td></td>
<td>DMP CAL RUNNING</td>
<td>N/A</td>
<td>N/A</td>
<td>DAMPER CALIBRATION ROUTINE RUNNING</td>
</tr>
<tr>
<td></td>
<td>DA SENS ALM</td>
<td>N/A</td>
<td>N/A</td>
<td>DISCHARGE AIR TEMPERATURE SENSOR ALARM</td>
</tr>
<tr>
<td></td>
<td>SYS ALARM</td>
<td>N/A</td>
<td>N/A</td>
<td>When AUX1-0 is set to SYS and there is any alarm (e.g., failed sensors, etc.), the AUX1-0 terminal has 24 Vac out.</td>
</tr>
<tr>
<td></td>
<td>ACT UNDER V</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR VOLTAGE LOW</td>
</tr>
<tr>
<td></td>
<td>ACT OVER V</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR VOLTAGE HIGH</td>
</tr>
<tr>
<td></td>
<td>ACT STALLED</td>
<td>N/A</td>
<td>N/A</td>
<td>ACTUATOR STALLED</td>
</tr>
</tbody>
</table>

NOTES:
1. STATUS -> OCCUPIED — The factory-standard Occupancy signal originates with a thermostat or other controller call for indoor fan operation at CTB terminal G. This signal passes through the Central Terminal Board’s OCCUPIED jumper JMP1 to the ECONO connector and to the W7220’s OCC input terminal. An external timeclock or relay is required to implement an Occupancy schedule on the economizer damper position.
2. STATUS -> MA TEMP, SETPOINTS -> MAT SET — The W7220 menu parameters and labels include designations MA, MAT and Mixed Air for the economizer cooling control sensor. On these rooftop units, the economizer control sensor is located downstream of the evaporator/indoor coil in the supply fan section where this sensor is designated as Supply Air Temperature (SAT) sensor.
3. SETPOINTS -> DRYBLB SET — This point is not displayed if a Return Air (differential) temperature sensor or an Outdoor Air enthalpy sensor is connected.
4. SYSTEM SETUP parameters must be configured as noted for 2-Speed unit operation:
 EQUIPMENT = CONV
 AUX2 I = W
 FAN SPEED = 2SPEED

For damper minimum position settings and checkout menu readings, see Table 13. For dry bulb operation with a 1 speed indoor fan, with or without DCV, see Tables 14 and 15. For enthalpy operation with a 1 speed indoor fan, with or without DCV, see Tables 16 and 17. For dry bulb operation with a 2 speed indoor fan, with or without DCV, see Tables 18 and 19. For enthalpy operation with a 2 speed indoor fan, with or without DCV, see Tables 20 and 21.

For damper minimum position settings and checkout menu readings, see Table 13. For dry bulb operation with a 1 speed indoor fan, with or without DCV, see Tables 14 and 15. For enthalpy operation with a 1 speed indoor fan, with or without DCV, see Tables 16 and 17. For dry bulb operation with a 2 speed indoor fan, with or without DCV, see Tables 18 and 19. For enthalpy operation with a 2 speed indoor fan, with or without DCV, see Tables 20 and 21.

For damper minimum position settings and checkout menu readings, see Table 13. For dry bulb operation with a 1 speed indoor fan, with or without DCV, see Tables 14 and 15. For enthalpy operation with a 1 speed indoor fan, with or without DCV, see Tables 16 and 17. For dry bulb operation with a 2 speed indoor fan, with or without DCV, see Tables 18 and 19. For enthalpy operation with a 2 speed indoor fan, with or without DCV, see Tables 20 and 21.

Table 12 — Menu Structure* (cont)

LEGEND
CLO — Compressor Lockout
ERV — Energy Recovery Ventilator
LCD — Liquid Crystal Display
MA — Mixed Air
MAT — Mixed Air Temperature
N/A — Not Applicable
OA — Outdoor Air
OAT — Outdoor Air Temperature
OCC — Occupied
RA — Return Air
RAT — Return Air Temperature
RTU — Rooftop Unit
SYS — System

* Table 12 illustrates the complete hierarchy. Your menu parameters may be different depending on your configuration. For example if you do not have a DCV (CO2) sensor, then none of the DCV parameters appear.
† When values are displayed, pressing and holding the ▲ or ▼ button causes the display to automatically increment.
** N/A = Not Applicable.
†† ERV Operation: When in cooling mode AND the conditions are NOT OK for economizing - the ERV terminal will be energized. In the Heating mode, the ERV terminal will be energized when the OA is below the ERV OAT setpoint in the setpoint menu.
Table 13 — Damper Minimum Position Settings and Readings on Checkout Menu

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (CO2 SENSOR)</th>
<th>SETPOINTS</th>
<th>FAN SPEED</th>
<th>CHECKOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>MIN POS</td>
<td>1</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>MIN POS H</td>
<td>2</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>MIN POS L</td>
<td>2</td>
<td>VMAX–LS</td>
</tr>
<tr>
<td>YES</td>
<td>VENT MIN</td>
<td>1</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>VENT MAX</td>
<td>1</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>VENT MIN H</td>
<td>2</td>
<td>VMAX–HS</td>
</tr>
<tr>
<td></td>
<td>VENT MAX H</td>
<td>2</td>
<td>VMAX–LS</td>
</tr>
<tr>
<td></td>
<td>VENT MIN L</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>VENT MAX L</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 14 — Dry Bulb Operation No DCV (CO2 Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off 0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On 0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On 24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>MIN POS</td>
<td>0v/Off 0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>MIN POS</td>
<td>0v/Off 0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>MIN POS</td>
<td>24v/On 0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 15 — Dry Bulb Operation with DCV (CO2 Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO2 Set</td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off 0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On 0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On 24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>VENTMIN</td>
<td>0v/Off 0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>VENTMIN to Full-Open</td>
<td>0v/Off 0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>VENTMIN to Full-Open</td>
<td>24v/On 0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above CO2 Set</td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off 0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On 0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On 24v/On</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
<td>VENTMIN to VENTMAX</td>
<td>0v/Off 0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>VENTMIN to Full-Open</td>
<td>0v/Off 0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>VENTMIN to Full-Open</td>
<td>24v/On 0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.
Table 16 — Enthalpy Operation No DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td>NONE</td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 17 — Enthalpy Operation with DCV (CO₂ Sensor) — 1 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td>Above CO₂ Set</td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>HIGH</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 18 — Dry Bulb Operation No DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td>NONE</td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>MIN POS to Full Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.
Table 19 — Dry Bulb Operation with DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td>Above CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 20 — Enthalpy Operation No DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO CO₂ SENSOR</td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>24v/On</td>
<td>MIN POS</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>MIN POS to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.

Table 21 — Enthalpy Operation with DCV (CO₂ Sensor) — 2 Speed Fan

<table>
<thead>
<tr>
<th>DEMAND CONTROLLED VENTILATION (DCV)</th>
<th>OUTSIDE AIR GOOD TO ECONOMIZE</th>
<th>Y1-I</th>
<th>Y2-I</th>
<th>FAN SPEED</th>
<th>Y1-O</th>
<th>Y2-O</th>
<th>OCCUPIED</th>
<th>UNOCCUPIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to Full-Open</td>
<td>Closed to Full-Open</td>
</tr>
<tr>
<td>Above CO₂ Set</td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>24v/On</td>
<td>24v/On</td>
<td>VENTMIN</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>OFF</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>LOW</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
<td>HIGH</td>
<td>24v/On</td>
<td>0v/Off</td>
<td>0v/Off</td>
<td>VENTMIN to VENTMAX</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*With stage 3 delay (STG3 DLY) in Advanced setup menu can turn on second stage of mechanical cooling Y2-O after the delay if the call for Y1-I and Y2-I have not been satisfied.
ENTHALPY SETTINGS — When the OA temperature, enthalpy and dew point are below the respective setpoints, the Outdoor Air can be used for economizing. Fig. 68 shows the new single enthalpy boundaries in the W7220. There are 5 boundaries (setpoints ES1 through ES5), which are defined by dry bulb temperature, enthalpy and dew point.

Refer to Table 22 for ENTH CURVE setpoint values.

The W7220 calculates the enthalpy and dew point using the OA temperature and humidity input from the OA enthalpy sensor. When the OA temperature, OA humidity and OA dew point are all below the selected boundary, the economizer sets the economizing mode to YES, economizing is available.

When all of the OA conditions are above the selected boundary, the conditions are not good to economize and the mode is set to NO.

Figure 68 shows the 5 current boundaries. There is also a high limit boundary for differential enthalpy. The high limit boundary is ES1 when there are no stages of mechanical cooling energized and HL (high limit) when a compressor stage is energized.

Table 22 provides the values for each boundary limit.

TWO-SPEED FAN OPERATION — The W7220 controller has the capability to work with a system using a 2-speed supply fan. The W7220 does not control the supply directly but uses the following input status to determine the speed of the supply fan and controls the OA damper to the required position, see Table 23.

The W (heating mode) is not controlled by the W7220 but it requires the status to know where to position the OA damper for minimum position for the fan speed.

The 2 speed fan delay is available when the system is programmed for 2 speed fan (in the System Setup menu item). The 2 speed fan delay is defaulted to 5 minutes and can be changed in the Advanced Setup menu item. When the unit has a call for Y1 In and in the free cooling mode and there is a call for Y2 In, the 2-speed fan delay starts and the OA damper will modulate 100% open, the supply fan should be set to high speed by the unit controller.

After the delay one of two actions will happen:
• The Y2 In call will be satisfied with the damper 100% open and fan on high speed and the call will turn off
• If the call for additional cooling in the space has not been satisfied then the first stage of mechanical cooling will be enabled through Y1 Out or Y2 Out.

![Fig. 68 — Single Enthalpy Curve Boundaries](image-url)
CHECKOUT — Inspect all wiring connections at the economizer module’s terminals, and verify compliance with the installation wiring diagrams.

For checkout, review the Status of each configured parameter and perform the Checkout tests.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 38.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to follow this warning could result in personal injury, property damage, or death.</td>
</tr>
<tr>
<td>Before performing service or maintenance operations on unit, always turn off main power switch to unit and install lock(s) and lockout tag(s). Unit may have more than one power switch. Ensure electrical service to rooftop unit agrees with voltage an amperage listed on the unit rating plate.</td>
</tr>
<tr>
<td>If any wiring changes are required, first be sure to remove power from the Economizer module before starting work. Pay particular attention to verifying the power connection (24 Vac).</td>
</tr>
</tbody>
</table>

Power Up — After the W7220 module is mounted and wired, apply power.

Initial Menu Display — On initial start up, Honeywell displays on the first line and economizer W7220 on the second line. After a brief pause, the revision of the software appears on the first line and the second line will be blank.

Power Loss (Outage or Brownout) — All setpoints and advanced settings are restored after any power loss or interruption.

NOTE: All settings are stored in non-volatile flash memory.

Status — Use the Status menu (see Table 12) to check the parameter values for the various devices and sensors configured.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 38.

Checkout Tests — Use the Checkout menu (on page 42) to test the damper operation and any configured outputs. Only items that are configured are shown in the Checkout menu.

NOTE: For information about menu navigation and use of the keypad see Interface Overview on page 38.

To perform a Checkout test:
1. Scroll to the desired test in the Checkout menu using the ▲ and ▼ buttons.
2. Press the ↩ (Enter) button to select the item.
3. RUN? appears.
4. Press the ↩ (Enter) button to start the test.
5. The unit pauses and then displays IN PROGRESS.
6. When the test is complete, DONE appears.
7. When all desired parameters have been tested, press the ↑ (Menu Up) button to end the test.

The Checkout tests can all be performed at the time of installation or at any time during the operation of the system as a test that the system is operable.

TROUBLESHOOTING

Alarms — The economizer module provides alarm messages that display on the 2-line LCD.

NOTE: Upon power up, the module waits 60 minutes before checking for alarms. This allows time for all the configured devices (e.g. sensors, actuator) to become operational. The exception is the SAT sensor which will alarm immediately.

If one or more alarms are present and there has been no keypad activity for at least 5 minutes, the Alarms menu displays and cycles through the active alarms.

You can also navigate to the Alarms menu at any time.

Clearing Alarms — Once the alarm has been identified and the cause has been removed (e.g. replaced faulty sensor) the alarm can be cleared from the display.

To clear an alarm, perform the following:
1. Navigate to the desired alarm.
2. Press the ↩ (Enter) button.
3. ERASE? displays.
4. Press the ↩ (Enter) button.
5. ALARM ERASED displays.
6. Press the ↑ (Menu up/Exit) button to complete the action and return to the previous menu.

NOTE: If the alarm still exists after clearing it, it is redisplayed within 5 seconds.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to follow this caution may result in damage to equipment. Be sure to allow enough time for compressor startup and shutdown between checkout tests so that you do not short-cycle the compressors.</td>
</tr>
</tbody>
</table>
PREMIERLINK™ (FACTORY-OPTION) — The PremierLink controller (see Fig. 69) is compatible with Carrier Comfort Network® (CCN) devices. This control is designed to allow users the access and ability to change factory-defined settings, thus expanding the function of the standard unit control board. CCN service access tools include System Pilot™, Touch Pilot™ and Service Tool. (Standard tier display tools Navigator and Scrolling Marquee are not suitable for use with latest PremierLink controller (Version 2.x).)

The PremierLink control is factory-mounted in the 48TC unit’s main control box to the left of the Central Terminal Board (CTB) (see Fig. 70). Factory wiring is completed through harnesses connected to the CTB thermostat. Field connections are made at a 16-pole terminal block (TB1 for size 08-14 and TB3 for size 16) located on the bottom shelf of the unit control box in front of the PremierLink controller. The factory-installed PremierLink control includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOP/accessory EconoMi$er®2 package.

The PremierLink controller requires the use of a Carrier electronic thermostat or a CCN connection for time broadcast to initiate its internal time-clock. This is necessary for broadcast of time of day functions (occupied/unoccupied).

NOTE: PremierLink controller is shipped in Sensor mode. To be used with a thermostat, the PremierLink controller must be configured to Thermostat mode. Refer to PremierLink Configuration instructions for Operating Mode.

See Fig. 71 and 72 for typical PremierLink wiring sizes 08-14 and Fig. 73 for size 16. See Fig. 74 (sizes 08-14) and 75 (size 16) for typical PremierLink wiring when the 48TC unit is equipped with a Humidi-MiZer® system.

Fig. 69 — PremierLink Controller

Fig. 70 — 48TC Control Box — PremierLink Location
Fig. 71 — 48TC*M08-12, PremierLink™ Wiring Schematic
Fig. 72 — 48TC**8-14, PremierLink™ Wiring Schematic
Fig. 73 — 48TC**16, PremierLink™ Wiring Schematic
Fig. 74 — 48TC**8-14, PremierLink™ Wiring Schematic with Humidi-MiZer® System
Supply Air Temperature (SAT) Sensor — On FIOP-equipped 48TC unit, the unit is supplied with a supply-air temperature (SAT) sensor (33ZCSENSAT). This sensor is a tubular probe type, approx 6-inches (152 mm) in length. It is a nominal 10-k ohm thermistor. The SAT is factory-wired.

The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply air duct (as required by local codes). Drill or punch a 1/2 in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. See Fig. 76.

Outdoor Air Temperature (OAT) Sensor — The OAT is factory-mounted in the EconoMi$er2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring.

EconoMi$er®2 — The PremierLink control is used with EconoMi$er2 (option or accessory) for outdoor air management. The damper position is controlled directly by the PremierLink control; EconoMi$er2 has no internal logic device.

Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO₂ sensor
- Outdoor air CO₂ sensor, refer to Table 24 for accessory part numbers.

FIELD CONNECTIONS — Field connections for accessory sensor and input devices are made at the 16-pole terminal block (TB1 for sizes 08-14 and TB3 for size 16) located on the control box bottom shelf in front of the PremierLink control (See Fig. 70-75). Some input devices also require a 24-vac signal source; connect at CTB terminal R at “THERMOSTAT” connection strip for this signal source. See connections figures on following pages for field connection locations (and for continued connections at the PremierLink board inputs).

Table 25 provides a summary of field connections for units equipped with Space Sensor. Table 26 provides a summary of field connections for units equipped with Space Thermostat.

Table 24 — PremierLink™ Sensor Usage

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>OUTDOOR AIR TEMPERATURE SENSOR</th>
<th>RETURN AIR TEMPERATURE SENSOR</th>
<th>OUTDOOR AIR ENTHALPY SENSOR</th>
<th>RETURN AIR ENTHALPY SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Dry Bulb Temperature with PremierLink (PremierLink requires 4-20 mA Actuator)</td>
<td>Included — CRTEMPSN001A00</td>
<td>Required — 33ZCT55SPT or equivalent</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Single Enthalpy with PremierLink (PremierLink requires 4-20 mA Actuator)</td>
<td>Included — Not Used</td>
<td>—</td>
<td>Requires — 33CSENTHSW</td>
<td>—</td>
</tr>
<tr>
<td>Differential Enthalpy with PremierLink (PremierLink requires 4-20 mA Actuator)</td>
<td>Included — Not Used</td>
<td>—</td>
<td>Requires — 33CSENTHSW</td>
<td>Requires — 33CSENTSEN</td>
</tr>
</tbody>
</table>

NOTE: CO₂ Sensors (Optional):
- 33ZCSENCO2 — Room sensor (adjustable). Aspirator box is required for duct mounting of the sensor.
- 33ZCASPCO2 — Aspirator box used for duct-mounted CO₂ room sensor.
- 33ZCT55CO2 — Space temperature and CO₂ room sensor with override.
- 33ZCT56CO2 — Space temperature and CO₂ room sensor with override and setpoint.
Table 25 — Space Sensor Mode

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>FIELD CONNECTION</th>
<th>INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T55–SEN/T56–SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>2</td>
<td>RMTOCC</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>3</td>
<td>T55–SEN/T56–SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>4</td>
<td>CMPSAFE</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>5</td>
<td>T56–SET</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>6</td>
<td>FSD</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>7</td>
<td>LOOP–PWR</td>
<td>Analog, 24VDC</td>
</tr>
<tr>
<td>8</td>
<td>SFS</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>9</td>
<td>IAQ–SEN</td>
<td>Analog, 4–20mA</td>
</tr>
<tr>
<td>10</td>
<td>FILTER</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>11</td>
<td>IAQ–COM/OAQ–COM/RH–COM</td>
<td>Analog, 4–20mA</td>
</tr>
<tr>
<td>12</td>
<td>CCN + (RED)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>13</td>
<td>O/AQ–SEN/RH–SEN</td>
<td>Analog, 4–20mA</td>
</tr>
<tr>
<td>14</td>
<td>CCN Gnd (WHT)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>15</td>
<td>AUX OUT (Power Exhaust)</td>
<td>(Output) Discrete 24VAC</td>
</tr>
<tr>
<td>16</td>
<td>CCN–(BLK)</td>
<td>Digital, 5VDC</td>
</tr>
</tbody>
</table>

LEGEND
- CCN — Carrier Comfort Network® (communication bus)
- CMPSAFE — Compressor Safety
- FILTER — Dirty Filter Switch
- FSD — Fire Shutdown
- IAQ — Indoor Air Quality (CO₂)
- OAQ — Outdoor Air Quality (CO₂)
- RAT — Return Air Temperature
- RH — Relative Humidity
- SFS — Supply Fan Status
- T55 — Space Temperature Sensor
- T56 — Space Temperature Sensor

Table 26 — Thermostat Mode

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>FIELD CONNECTION</th>
<th>INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAT SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>3</td>
<td>RAT SEN</td>
<td>Analog (10k thermistor)</td>
</tr>
<tr>
<td>4</td>
<td>Y1</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Y2</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>7</td>
<td>LOOP–PWR</td>
<td>Analog, 24VDC</td>
</tr>
<tr>
<td>8</td>
<td>W1</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>9</td>
<td>IAQ–SEN</td>
<td>Analog, 4–20mA</td>
</tr>
<tr>
<td>10</td>
<td>W2</td>
<td>Discrete, 24VAC</td>
</tr>
<tr>
<td>11</td>
<td>IAQ–COM/OAQ–COM/RH–COM</td>
<td>Analog, 4–20mA</td>
</tr>
<tr>
<td>12</td>
<td>CCN + (RED)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>13</td>
<td>O/AQ–SEN/RH–SEN</td>
<td>Analog, 4–20mA</td>
</tr>
<tr>
<td>14</td>
<td>CCN Gnd (WHT)</td>
<td>Digital, 5VDC</td>
</tr>
<tr>
<td>15</td>
<td>AUX OUT (Power Exhaust)</td>
<td>(Output) Discrete 24VAC</td>
</tr>
<tr>
<td>16</td>
<td>CCN–(BLK)</td>
<td>Digital, 5VDC</td>
</tr>
</tbody>
</table>

LEGEND
- CCN — Carrier Comfort Network® (communication bus)
- G — Thermostat Fan
- IAQ — Indoor Air Quality (CO₂)
- OAQ — Outdoor Air Quality (CO₂)
- RAT — Return Air Temperature
- RH — Relative Humidity
- W1 — Thermostat Heat Stage 1
- W2 — Thermostat Heat Stage 2
- Y1 — Thermostat Cool Stage 1
- Y2 — Thermostat Cool Stage 2
SPACE SENSORS — The PremierLink controller is factory-shipped configured for Space Sensor Mode. A Carrier T-55 or T-56 space sensor must be used. T-55 space temperature sensor provides a signal of space temperature to the PremierLink control. T-56 provides same space temperature signal plus it allows for adjustment of space temperature setpoints from the face of the sensor by the occupants.

Connect T-55 — See Fig. 77 for typical T-55 internal connections. Connect the T-55 SEN terminals to TB1 (sizes 08-14) or TB3 (size 16) terminals 1 and 3 (see Fig. 78).

Connect T-56 — See Fig. 79 for T-56 internal connections. Install a jumper between SEN and SET terminals as illustrated. Connect T-56 terminals to TB1 (sizes 08-14) or TB3 (size 16) terminals 1, 3, and 5 (see Fig. 80).

CONNECT THERMOSTAT — A 7-wire thermostat connection requires a 24-v power source and a common connection. Use the R and C terminals on the CTB’s THERMOSTAT connection strip for these. Connect the thermostat’s Y1, Y2, W1, W2 and G terminals to PremierLink TB1 (sizes 08-14) or TB3 (size 16) as shown in Fig. 81.

If the 48TC unit is equipped with factory-installed smoke detector(s), disconnect the factory BLU lead at TB1-6 (sizes 08-14) or TB3-6 (size 16) (Y2) before connecting the thermostat. Identify the BLU lead originating at CTB-DDC-1; disconnect at TB1-6 (sizes 08-14) or TB3-6 (size 16) and tape off. Confirm that the second BLU lead at TB1-6 (sizes 08-14) or TB3-6 (size 16) remains connected to PremierLink J4-8.
If the 48TC unit has an economizer system and free-cooling operation is required, a sensor representing Return Air Temperature must also be connected (field-supplied and installed). This sensor may be a T-55 Space Sensor (see Fig. 77) installed in the space or in the return duct, or it may be sensor P/N: 33ZCSENSAT, installed in the return duct. Connect this sensor to TB1-1 (for sizes 08-14) or TB3-1 (for size 16) and TB1-3 (for sizes 08-14) or TB3-3 (for size 16) per Fig. 78.

Configure the Unit for Thermostat Mode — Connect to the CCN bus using a CCN service tool and navigate to PremierLink Configuration screen for Operating Mode. Default setting is Sensor Mode (value 1). Change the value to 0 to reconfigure the controller for Thermostat Mode.

When the PremierLink is configured for Thermostat Mode, these functions are not available: Fire Shutdown (FSD), Remote Occupied (RMTOCC), Compressor Safety (CMPSAFE), Supply Fan Status (SFS), and Filter Pressure Switch (FILTER).

ECONOMIZER CONTROLS

Indoor Air Quality (CO₂) Sensor — The indoor air quality sensor accessory monitors space carbon dioxide (CO₂) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO₂ present in the space air.

The CO₂ sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO₂ sensor for electrical requirements and terminal locations. See Fig. 82 for typical CO₂ sensor wiring schematic.

![Fig. 82 — Indoor/Outdoor Air Quality (CO₂) Sensor (33ZCSENCO2) — Typical Wiring Diagram](image)

To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO₂ leaving the space. The sensor should be mounted in a location to avoid direct breath contact.

Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

Wiring the Indoor Air Quality Sensor — For each sensor, use two 2-conductor 18 AWG (American Wire Gage) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. See Fig. 82. Connect the 4-20 mA terminal to terminal TB1-9 (for sizes 08-14) or TB3-9 (for size 16) and connect the SIG COM terminal to terminal TB1-11 (for sizes 08-14) or TB3-11 (for size 16). See Fig. 83.

Fig. 83 — Indoor CO₂ Sensor (33ZCSENCO2) Connections (Sizes 08-14 Shown)

Refer to the PremierLink Installation, Start-up, and Configuration Instructions, for detailed configuration information Outdoor Air Quality Sensor (P/N: 33ZCSENCO2 plus weatherproof enclosure).

The outdoor air CO₂ sensor is designed to monitor carbon dioxide (CO₂) levels in the outside ventilation air and interface with the ventilation damper in an HVAC system. The OAQ sensor is packaged with an outdoor cover. See Fig. 84. The outdoor air CO₂ sensor must be located in the economizer outside air hood.

Fig. 84 — Outdoor Air Quality Sensor Cover

Wiring the Outdoor Air CO₂ Sensor: A dedicated power supply is required for this sensor. A two-wire cable is required to wire the dedicated power supply for the sensor. The two wires should be connected to the power supply and terminals 1 and 2.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the OAQ sensor. See Fig. 82. Connect the 4 to 20 mA terminal to the TB1-13 (for size 08-14) or TB3-13 (for size 16) terminal of the 48TC. Connect the SIG COM terminal to the TB1-11 (for sizes 08-14) or TB3-11 (for size 16) terminal of the 48TC unit. See Fig. 85.

OAQ Sensor/RH Sensor

Fig. 85 — Outdoor CO₂ Sensor Connections (Sizes 08-14 Shown)
NOTE: The accessory space relative humidity sensor and humidistat are not available for single phase (-3 voltage code) models.

SPACE RELATIVE HUMIDITY SENSOR CONNECTIONS — The accessory space relative humidity sensor (33ZCSENSRH-01) is installed on an interior wall to measure the relative humidity of the air within the occupied space.

The use of a standard 2x4 inch electrical box to accommodate the wiring is recommended for installation. The sensor can be mounted directly on the wall, if acceptable by local codes.

⚠️ CAUTION ⚠️
Failure to follow this caution may result in permanent damage to the sensor.

DO NOT clean or touch the sensing element with chemical solvents as they can permanently damage the sensor.

Failure to follow this caution will result in inaccurate sensor readings.

DO NOT mount the sensor in drafty areas such as near heating or air-conditioning ducts, open windows, fans, or over heat sources such as baseboard heaters, radiators, or wall-mounted dimmers. Sensors mounted in those areas will produce inaccurate readings.

If the sensor is installed directly on a wall service, install the humidity sensor using 2 screws and 2 hollow wall anchors (field supplied). Do not over tighten screws. See Fig. 86.

Fig. 86 — Space Relative Humidity Sensor Installation

The sensor must be mounted vertically on the wall. The Carrier logo should be orientated correctly when the sensor is properly mounted.

Avoid corner locations. Allow at least 4 ft between the sensor and any corner. Airflow near corners tends to be reduced, resulting in erratic sensor readings. The sensor should be vertically mounted approximately 5 ft up from the floor, beside the space temperature sensor.

For wiring distances up to 500 feet, use a 3-conductor, 18 or 20 AWG cable. A CCN communication cable can be used, although the shield is not required. The shield must be removed from the sensor end of the cable if this cable is used. See Fig. 87 for wiring details.

![Space Relative Humidity Sensor Connections (Sizes 08-14 Shown)](image)

The power for the sensor is provided by the PremierLink control on terminal JS-4 (+33 to +35vdc).

To wire the sensor:
1. At the sensor, remove 4 inches of the jacket from the cable. Strip ¼ inch of insulation from each conductor. Route the cable through the wire clearance opening in the center of the sensor. See Fig. 86.
2. Connect a field-supplied BLACK wire to the sensor screw terminal marked Vin.
3. Connect a field-supplied RED wire into the sensor screw terminal marked Io.
4. Connect the field-supplied RED wire from the sensor to TB1-13 (for sizes 08-14) and TB3-13 (for size 16).
5. Connect the field-supplied BLACK wire from the sensor to TB1-7 (for size 08-14) or TB3-7 (for size 16).

SMOKE DETECTOR/FIRE SHUTDOWN (FSD) — This function is available only when PremierLink is configured for (Space) Sensor Mode. The unit is factory-wired for PremierLink FSD operation when PremierLink is factory-installed.

On 48TC units equipped with factory-installed Smoke Detector(s), the smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s CTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The PremierLink communicates the smoke detector’s tripped status to the CCN building control. See Fig. -75, PremierLink wiring schematics.

FILTER STATUS SWITCH — This function is available only when PremierLink is configured for (Space) Sensor Mode.

PremierLink control can monitor return filter status in two ways: By monitoring a field-supplied/installed filter pressure switch or via supply fan runtime hours.

Using switch input: Install the dirty filter pressure switch according to switch manufacturer’s instructions, to measure pressure drop across the unit’s return filters. Connect one side of the switch’s NO contact set to CTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-10 (size 08-14) or TB3-10 (for size 16). Setpoint for Dirty Filter is set at the switch. See Fig. 88.

When the filter switch’s NO contact set closes as filter pressure drop increases (indicating dirt-laden filters), the input signal to PremierLink causes the filter status point to read “DIRTY”.

![PremierLink Wiring Schematics](image)
Using Filter Timer Hours — Refer to the PremierLink Installation, Start-up, and Configuration Instructions for instructions on using the PremierLink Configuration screens and on unit alarm sequence.

SUPPLY FAN STATUS SWITCH — The PremierLink control can monitor supply fan operation through a field-supplied/installed differential pressure switch. This sequence will prevent (or interrupt) operation of unit cooling, heating and economizer functions until the pressure switch contacts are closed indicating proper supply fan operation.

Install the differential pressure switch in the supply fan section according to switch manufacturer’s instructions. Arrange the switch contact to be open on no flow and to close as pressure rises indicating fan operation.

Connect one side of the switch’s NO contact set to TB1-8 (for size 08-14) or TB3-8 (for size 16). Setpoint for Supply Fan Statuses set at the switch. See Fig. 89.

Remote Occupied Switch (NO, close on rising pressure (high drop))

REMOTE OCCUPIED SWITCH — The PremierLink control permits a remote time-clock to override the control’s on-board occupancy schedule and place the unit into Occupied mode. This function may also provide a “Door Switch” time delay function that will terminate cooling and heating functions after a 2 to 20 minute delay.

Connect one side of the NO contact set on the timeclock to CTB’s THERMOSTAT-R terminal. Connect the other side of the NO contact set to TB1-8 (for size 08-14) or TB3-8 (for size 16). See Fig. 90.

Power Exhaust

Power Exhaust (OUTPUT) — Connect the accessory Power Exhaust contactor coil(s) per Fig. 91.

Communications BUS wiring is field-supplied and field-installed. It consists of shielded 3-conductor cable with drain (ground) wire. The cable selected must be identical to the CCN Communication BUS wire used for the entire network.

See Table 27 for recommended cable.

Table 27 — Recommended Cables

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>CABLE PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>2413 or 5463</td>
</tr>
<tr>
<td>American</td>
<td>A22503</td>
</tr>
<tr>
<td>Belden</td>
<td>8772</td>
</tr>
<tr>
<td>Columbia</td>
<td>02525</td>
</tr>
</tbody>
</table>

NOTE: Conductors and drain wire must be at least 20 AWG, stranded, and tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of -20 C to 60 C is required. Do not run communication wire in the same conduit as or next to any AC voltage wiring.

The communication bus shields must be tied together at each system element. If the communication bus is entirely within one building, the resulting continuous shield must be connected to ground at only one single point. If the communication bus cable exits from one building and enters another building, the shields must be connected to the grounds at a lightning suppressor in each building (one point only).

Connecting CCN BUS

NOTE: When connecting the communication bus cable, a color code system for the entire network is recommended to simplify installation and checkout. See Table 28 for the recommended color code.
Table 28 — Color Code Recommendations

<table>
<thead>
<tr>
<th>SIGNAL TYPE</th>
<th>CCN BUS WIRE COLOR</th>
<th>CCN PLUG PIN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Red</td>
<td>1</td>
</tr>
<tr>
<td>Ground</td>
<td>White</td>
<td>2</td>
</tr>
<tr>
<td>–</td>
<td>Black</td>
<td>3</td>
</tr>
</tbody>
</table>

Connect the CCN (+) lead (typically RED) to the unit’s TB1-12 (for sizes 08-14) or TB3-12 (for size 16) terminal. Connect the CCN (ground) lead (typically WHT) to the unit’s TB1-14 (for sizes 08-14) or TB3-14 (for size 16) terminal. Connect the CCN (-) lead (typically BLK) to the unit’s TB1-16 (for sizes 08-14) or TB3-16 (for size 16) terminal. See Fig. 92.

Fig. 92 — PremierLink CCN Bus Connections (Sizes 08-14 Shown)

RTU OPEN CONTROL SYSTEM — The RTU Open controller is an integrated component of the Carrier rooftop unit. Its internal application programming provides optimum performance and energy efficiency. RTU Open enables the unit to run in 100% stand-alone control mode, Carrier’s i-Vu® Open network, or a Third Party Building Automation System (BAS). On-board DIP switches allow you to select your protocol (and baud rate) of choice among the four most popular protocols in use today: BACnet\(^1\), Modbus\(^2\), Johnson N2 and LonWorks\(^3\) (see Fig. 93).

The RTU Open control is factory-mounted in the 48TC unit’s main control box, to the left of the CTB. See Fig. 94-98. Factory wiring is completed through harnesses connected to the CTB. Field connections for RTU Open sensors will be made at the PCB connectors on the RTU Open board. The factory-installed RTU Open control includes the supply-air temperature (SAT) sensor. The outdoor air temperature (OAT) sensor is included in the FIOP/accessory EconoMi$er\(^2\) package.

Refer to Table 29, RTU Open Controller Inputs and Outputs for locations of all connections to the RTU Open board. See Fig. 94-98 for wiring diagrams.

1. BACnet is a registered trademark of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers).
2. Modbus is a registered trademark of Schneider Electric.
3. LonWorks is a registered trademark of Echelon Corporation.

Fig. 93 — RTU Open Multi-Protocol Control Board
Fig. 94 — 48TC*M08-12, Typical RTU Open System Control Wiring Diagram
Fig. 95 — 48TC**08-14, Typical RTU Open System Control Wiring Diagram
Fig. 96 — 48TC**16, Typical RTU Open System Control Wiring Diagram
Fig. 97 — 48TC**8-14, Typical RTU Open System Control Wiring Diagram with Humidi-MiZer® System
Fig. 98 — 48TC**16, Typical RTU Open System Control Wiring Diagram with Humidi-MiZer® System
Table 29 — RTU Open Controller Inputs and Outputs

<table>
<thead>
<tr>
<th>POINT NAME</th>
<th>BACNET OBJECT NAME</th>
<th>TYPE OF I/O</th>
<th>CONNECTION PIN NUMBER(S)</th>
<th>CHANNEL DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATED INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Temp / Zone Temp</td>
<td>zone_temp</td>
<td>Al (10K Thermistor)</td>
<td>J20–1 and 2</td>
<td>Analog Input 10</td>
</tr>
<tr>
<td>Supply Air Temperature</td>
<td>sa_temp</td>
<td>Al (10K Thermistor)</td>
<td>J2–1 and 2</td>
<td>Analog Input 6</td>
</tr>
<tr>
<td>Outside Air Temperature</td>
<td>oa_temp</td>
<td>Al (10K Thermistor)</td>
<td>J2–3 and 4</td>
<td>Analog Input 7</td>
</tr>
<tr>
<td>Space Temperature Offset Pot</td>
<td>stpt_adj_offset</td>
<td>Al (100K Potentiometer)</td>
<td>J20–3 and 4</td>
<td>Analog Input 11</td>
</tr>
<tr>
<td>Safety Chain Feedback</td>
<td>safety_status</td>
<td>BI (24 VAC)</td>
<td>J1–9</td>
<td>Binary Input 4</td>
</tr>
<tr>
<td>Compressor Safety Status</td>
<td>comp_status</td>
<td>BI (24 VAC)</td>
<td>J1–2</td>
<td>Binary Input 3</td>
</tr>
<tr>
<td>Fire Shutdown Status</td>
<td>firedown_status</td>
<td>BI (24 VAC)</td>
<td>J1–10</td>
<td>Binary Input 5</td>
</tr>
<tr>
<td>Enthalpy Status</td>
<td>enthalpy_status</td>
<td>BI (24 VAC)</td>
<td>J2–6 and 7</td>
<td>Binary Input 8</td>
</tr>
<tr>
<td>Humidistat Input Status</td>
<td>humstat_status</td>
<td>BI (24 VAC)</td>
<td>J5–7 and 8</td>
<td>Binary Input 9</td>
</tr>
<tr>
<td>Zone Temperature</td>
<td>n/a</td>
<td>n/a</td>
<td>J13–1–4</td>
<td>Rnet</td>
</tr>
<tr>
<td>CONFIGURABLE INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Air CO₂</td>
<td>iaq</td>
<td>AI (4–20 mA)</td>
<td>J4–2 and 3 or J4–5 and 6</td>
<td>Analog Input 2</td>
</tr>
<tr>
<td>Outdoor Air CO₂</td>
<td>oaq</td>
<td>AI (4–20 mA)</td>
<td></td>
<td>Analog Input 1</td>
</tr>
<tr>
<td>Space Relative Humidity</td>
<td>space_rh</td>
<td>AI (4–20 mA)</td>
<td></td>
<td>Analog Input 10</td>
</tr>
<tr>
<td>Supply Fan Status2</td>
<td>sfan_status</td>
<td>BI (24 VAC)</td>
<td>J5–1 and 2 or J5–3 and 4, J5–5 and 6 or J5–7 and 8 (elsewhere)</td>
<td>Binary Input 3, 5, 8, or 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>Filter Status2</td>
<td>filter_status</td>
<td>BI (24 VAC)</td>
<td>J5–1 and 2 or J5–3 and 4, J5–5 and 6 or J5–7 and 8 (elsewhere)</td>
<td>Binary Input 3, 5, 8, or 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>Door Contact2</td>
<td>door_contact_status</td>
<td>BI (24 VAC)</td>
<td>J5–1 and 2 or J5–3 and 4, J5–5 and 6 or J5–7 and 8 (elsewhere)</td>
<td>Binary Input 3, 5, 8, or 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>Remote Occupancy Input2</td>
<td>occ_contact_status</td>
<td>BI (24 VAC)</td>
<td>J5–1 and 2 or J5–3 and 4, J5–5 and 6 or J5–7 and 8 (elsewhere)</td>
<td>Binary Input 3, 5, 8, or 9, except where intrinsic input is used</td>
</tr>
<tr>
<td>IGC Input2</td>
<td>igcovr_status</td>
<td>BI (24 VAC)</td>
<td>J5–1 and 2 or J5–3 and 4, J5–5 and 6 or J5–7 and 8 (elsewhere)</td>
<td>Binary Input 9. Mandatory input on gas heat units.</td>
</tr>
<tr>
<td>OUTPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economizer Output</td>
<td>econ_output</td>
<td>AO (4–20mA)</td>
<td>J2–5</td>
<td>Analog Output 1</td>
</tr>
<tr>
<td>Supply Fan VFD</td>
<td>vfd_output</td>
<td>AO (2–10Vdc)</td>
<td>J22–1 and 2</td>
<td>Analog Output 2</td>
</tr>
<tr>
<td>Supply Fan Relay</td>
<td>sfan</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1–4</td>
<td>Binary Output 1 (G)</td>
</tr>
<tr>
<td>Cool 1 Relay State</td>
<td>comp_1</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1–8</td>
<td>Binary Output 5 (Y1)</td>
</tr>
<tr>
<td>Cool 2 Relay State</td>
<td>comp_2</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1–7</td>
<td>Binary Output 4 (Y2)</td>
</tr>
<tr>
<td>Cool 3 Relay State</td>
<td>comp_3</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J11–5 and 6</td>
<td>Binary Output 7 (Y3)</td>
</tr>
<tr>
<td>Heat 1 Relay State</td>
<td>heat_1</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1–6</td>
<td>Binary Output 3 (W1)</td>
</tr>
<tr>
<td>Heat 2 Relay State</td>
<td>heat_2</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J1–5</td>
<td>Binary Output 2 (W2)</td>
</tr>
<tr>
<td>Power Exhaust Relay State</td>
<td>pexh</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J11–2 and 3 (N.O.)</td>
<td>Binary Output 8 (PE)</td>
</tr>
<tr>
<td>Dehumidification Relay</td>
<td>dehum</td>
<td>BO Relay (24VAC, 1A)</td>
<td>J11–7 and 8 (N.O.)</td>
<td>Binary Output 6</td>
</tr>
</tbody>
</table>

LEGEND

AI — Analog Input
AO — Analog Output
BI — Binary Input
BO — Binary Output

1. Safety Chain Feedback: 24Vac required at this terminal to provide “Run Enable” status. See Input/Output section for additional instructions.
2. These inputs are configurable. If installed, they take the place of the default input on the specific channel. See appropriate Input Configuration Section for wiring and setup instructions.
3. Refer to the input configuration and accessory sections of the RTU Open Multi–Protocol Controller Controls, Start–Up, Operation and Troubleshooting manual for more detail.
4. Parallel pins J5–1 = J2–6, J5–3 = J1–10, J5–5 = J1–2 are used for field installation.
The RTU Open controller requires the use of a Carrier space sensor. A standard thermostat cannot be used with the RTU Open system.

Supply Air Temperature (SAT) Sensor (33ZCSENSAT) —
The sensor is supplied with the 48TC unit. This sensor is a tubular probe type, approx 6-inches (152 mm) in length. It is a nominal 10-k ohm thermistor.

The SAT is factory-wired. The SAT probe is wire-tied to the supply-air opening (on the horizontal opening end) in its shipping position. Remove the sensor for installation. Re-position the sensor in the flange of the supply-air opening or in the supply-air duct (as required by local codes). Drill or punch a 1/2-in. hole in the flange or duct. Use two field-supplied, self-drilling screws to secure the sensor probe in a horizontal orientation. See Fig. 76.

Outdoor Air Temperature (OAT) Sensor — The sensor is factory-mounted in the EconoMi$er2 (FIOP or accessory). It is a nominal 10k ohm thermistor attached to an eyelet mounting ring.

EconoMi$er2 — The EconoMi$er2 (option or accessory) is used with the RTU Open control for outdoor air management. The damper position is controlled directly by the RTU Open control; EconoMi$er2 has no internal logic device.

Outdoor air management functions can be enhanced with field-installation of these accessory control devices:

- Enthalpy control (outdoor air or differential sensors)
- Space CO₂ sensor
- Outdoor air CO₂ sensor

FIELD CONNECTIONS — Field connections for accessory sensors and input devices are made to the RTU Open, at plugs J1, J2, J4, J5, J11 and J20. All field control wiring that connects to the RTU Open must be routed through the raceway built into the corner post as shown in Fig. 54. The raceway provides the UL required clearance between high- and low-voltage wiring. Pass the control wires through the hole provided in the corner post, then feed the wires thorough the raceway to the RTU Open. Connect to the wires to the removable PCB connectors and then reconnect the connectors to the board.

Space Temperature (SPT) Sensors — There are two types of SPT sensors available from Carrier, resistive input non-communicating (T55, T56, and T59) and Rnet communicating (SPS, SPPL, SPP, and SPPF) sensors. Each type has a variety of options consisting of: timed override button, set point adjustment, a LCD screen, and communication tie in. Space temperature can also be written to from a building network or zoning system. However, it is still recommended that return air duct sensor be installed to allow stand-alone operation for back-up. Refer to the configuration section for details on controller configurations associated with space sensors.

- 33ZCT55SPT, space temperature sensor with override button (T-55)
- 33ZCT56SPT, space temperature sensor with override button and setpoint adjustment (T-56)
- 33ZCT59SPT, space temperature sensor with LCD (liquid crystal display) screen, override button, and setpoint adjustment (T-59)

Use 20 gauge wire to connect the sensor to the controller. The wire is suitable for distances of up to 500 ft. Use a three-conductor shielded cable for the sensor and setpoint adjustment connections. If the setpoint adjustment (slidebar) is not required, then an unshielded, 18 or 20 gauge, two-conductor, twisted pair cable may be used.

Connect T-55 — See Fig. 77 for typical T-55 internal connections. Connect the T-55 SEN terminals to RTU Open J20-1 and J20-2. See Fig. 99.

Outdoor Air CO₂ Sensor — The indoor air quality sensor accessory monitors space carbon dioxide (CO₂) levels. This information is used to monitor IAQ levels. Several types of sensors are available, for wall mounting in the space or in return duct, with and without LCD display, and in combination with space temperature sensors. Sensors use infrared technology to measure the levels of CO₂ present in the space air.

The CO₂ sensors are all factory set for a range of 0 to 2000 ppm and a linear mA output of 4 to 20. Refer to the instructions supplied with the CO₂ sensor for electrical requirements and terminal locations. See Fig. 102 for typical CO₂ sensor wiring schematic.
To accurately monitor the quality of the air in the conditioned air space, locate the sensor near a return-air grille (if present) so it senses the concentration of CO₂ leaving the space. The sensor should be mounted in a location to avoid direct breath contact.

Do not mount the IAQ sensor in drafty areas such as near supply ducts, open windows, fans, or over heat sources. Allow at least 3 ft (0.9 m) between the sensor and any corner. Avoid mounting the sensor where it is influenced by the supply air; the sensor gives inaccurate readings if the supply air is blown directly onto the sensor or if the supply air does not have a chance to mix with the room air before it is drawn into the return airstream.

Wiring the Indoor Air Quality Sensor — For each sensor, use two 2-conductor 18 AWG (American Wire Gage) twisted-pair cables (unshielded) to connect the separate isolated 24 vac power source to the sensor and to connect the sensor to the control board terminals.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the sensor. See Fig. 82. Connect the 4-20 mA terminal to RTU Open J4-2 and connect the SIG COM terminal to RTU Open J4-3. See Fig. 102.

IAQ Sensor

![IAQ Sensor Diagram]

Fig. 102 — RTU Open/Indoor CO₂ Sensor (33ZCSENCO2) Connections

Outdoor Air Quality Sensor (P/N 33ZCSENCO2 plus weatherproof enclosure) — The sensor is designed to monitor carbon dioxide (CO₂) levels in the outside ventilation air and interface with the ventilation damper in an HVAC system. The OAQ sensor is packaged with an outdoor cover. See Fig. 103. The outdoor air CO₂ sensor must be located in the economizer outside air hood.

Wiring the Outdoor Air CO₂ Sensor: A dedicated power supply is required for this sensor. A two-wire cable is required to wire the dedicated power supply for the sensor. The two wires should be connected to the power supply and terminals 1 and 2.

To connect the sensor to the control, identify the positive (4 to 20 mA) and ground (SIG COM) terminals on the OAQ sensor. See Fig. 93. Connect the 4 to 20 mA terminal to RTU Open J4-5. Connect the SIG COM terminal to RTU Open J4-6. See Fig. 103.

OAQ Sensor

![OAQ Sensor Diagram]

Fig. 103 — RTU Open / Outdoor CO₂ Sensor (33ZCSENCO2) Connections

Space Relative Humidity Sensor or Humidistat

NOTE: The accessory space relative humidity sensor and humidistat are not available for single phase (-3 voltage code) models.

Humidi-MiZer® Control Wiring — In units equipped with the Humidi-MiZer option there are two pink (PNK) wires loose in the control box used to control the dehumidification function of the unit. These pink wires are meant to be tied to a space humidistat or thermistat on an electromechanical unit. On RTU Open equipped units these pink wires must be connected to J11-7 and 8 to allow the Open board to operate the dehumidification function for the unit. Disconnect the J11 PCB style connector from the board and use the plug screws to secure the pink wires in pins 7 and 8, reconnect the plug to the board at J11.

Relative Humidity Sensors (Space or Duct Mounted) — The accessory space humidity sensor (33ZCSSENSORH-01) or duct humidity sensor (33ZCSENDRH-01) is used to measure the relative humidity of air within the space or return air duct. The RH reading is used to control the Humidi-MiZer option of the rooftop unit. For wiring distances up to 500 ft (152 m), use a 3-conductor, 18 or 20 AWG shielded cable. The shield must be removed from the sensor end of the cable and grounded at the unit end. The current loop power for sensor is provided by the RTU Open controller as 24vdc. Refer to the instructions supplied with the RH sensor for the electrical requirements and terminal locations. RTU Open configurations must be changed after adding an RH sensor. See Fig. 104 and 105 for typical RH sensor wiring.

- J4-1 or J4-4 = 24vdc loop power
- J4-2 or J4-5 = 4-20mA signal input

NOTE: The factory default for dehumidification control is normally open humidistat.
Humidistat — The accessory humidistat provides the RTU Open insight to the relative humidity in the space. The humidistat reads the RH level in the space and compares it to its set-point to operate a dry contact. The humidistat is a dedicated input on the configurable input 9 and tells the RTU Open when the RH level is HIGH or LOW. The normal condition for humidity is LOW. A normally open humidistat is the factory default control for the Humidi-MiZer® option. See Fig. 105.

Fan Status — The fan status accessory is a field-installed accessory. This accessory detects when the indoor fan is blowing air. When installing this accessory, the unit must be configured for fan status by setting MENU>Config>Inputs<input 3, 5, 8, or 9 to Fan Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 93-98 for wire terminations at J5.

Remote Occupancy — The remote occupancy accessory is a field-installed accessory. This accessory overrides the unoccupied mode and puts the unit in occupied mode. When installing this accessory, the unit must be configured for remote occupancy by setting MENU>Config>Inputs<input 3, 5, 8, or 9 to Remote Occupancy and normally open (N/O) or normally closed (N/C).

Also set MENU>Schedules>occupancy source to DI on/off. Input 8 or 9 is recommended for easy of installation. Refer to Fig. 93 and Table 29 for wire terminations at J5.

Power Exhaust (output) — The relay used by the RTU Open board to control power exhaust is a dry contact which means it does not have 24vac. This 24vac must be connected to the relay to allow it to operate the power exhaust relay in the PE accessory. A 24vac source must be provided to J11-2 on the RTU Open control board. This can be provided by the unit’s transformer from various sources. The “R” terminal on the unit’s central terminal board (CTB) is a logical source. Refer to Fig. 93 and Fig. 94 or 97 for wire terminations at J11.

COMMUNICATION WIRING — PROTOCOLS — Protocols are the communication languages spoken by control devices. The main purpose of a protocol is to communicate information in the most efficient method possible. Different protocols exist to provide different kinds of information for different applications. In the BAS application, many different protocols are used, depending on manufacturer. Protocols do not change the function of a controller; just make the front end user different.

The RTU Open can be set to communicate on four different protocols: BACnet, Modbus, N2, and LonWorks. Switch 3 (SW3) on the board is used to set protocol and baud rate. Switches 1 and 2 (SW1 and SW2) are used to set the board’s network address. See Fig. 106 and 107 for protocol switch settings and address switches. The third party connection to the RTU Open is through plug J19. See Fig. 108 for wiring.

NOTE: Power must be cycled after changing the SW1-3 switch settings.

Refer to the RTU Open v3 Integration Guide for more detailed information on protocols third party wiring and networking.

SW3 PROTOCOL SELECTION

<table>
<thead>
<tr>
<th>PROTOCOL</th>
<th>DS8</th>
<th>DS7</th>
<th>DS6</th>
<th>DS5</th>
<th>DS4</th>
<th>DS3</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP (Master)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
<td>Select Baud</td>
</tr>
<tr>
<td>Modbus (Slave)</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>Select Baud</td>
</tr>
<tr>
<td>N2 Slave</td>
<td>Unused</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>Lon Works</td>
<td>Unused</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

LEGEND

DS — DIP Switch

NOTE: BACnet MS/TP SW3 example shown.

Baud Rate Selection

<table>
<thead>
<tr>
<th>BAUD RATE</th>
<th>DS2</th>
<th>DS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,600</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>19,200</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>38,400</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>76,800</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

Fig. 105 — Duct Relative Humidity Sensor Typical Wiring

To wire in the field:

- J5-8 = 24 VAC source for dry contact
- J5-7 = Signal input

Smoke Detector/Fire Shutdown (FSD) is installed on 48TC units equipped with factory-installed Smoke Detector(s). The smoke detector controller implements the unit shutdown through its NC contact set connected to the unit’s CTB input. The FSD function is initiated via the smoke detector’s Alarm NO contact set. The RTU Open controller communicates the smoke detector’s tripped status to the BAS building control. See Fig. 94-98, the RTU Open System Control wiring schematics.

The Fire Shutdown Switch configuration, MENU>Config>Inputs<input 5, identifies the normally open status of this input when there is no fire alarm.

Connecting Discrete Inputs

Filter Status — The filter status accessory is a field-installed accessory. This accessory detects plugged filters. When installing this accessory, the unit must be configured for filter status by setting MENU>Config>Inputs<input 3, 5, 8, or 9 to Filter Status and normally open (N/O) or normally closed (N/C). Input 8 or 9 is recommended for easy of installation. Refer to Fig. 93-98 for wire terminations at J5.

Remote Occupancy — The remote occupancy accessory is a field-installed accessory. This accessory overrides the unoccupied mode and puts the unit in occupied mode. When installing this accessory, the unit must be configured for remote occupancy by setting MENU>Config>Inputs<input 3, 5, 8, or 9 to Remote Occupancy and normally open (N/O) or normally closed (N/C).

Also set MENU>Schedules>occupancy source to DI on/off. Input 8 or 9 is recommended for easy of installation. Refer to Fig. 93 and Table 29 for wire terminations at J5.
LOCAL ACCESS

Wall Mounted Equipment Touch — The Equipment Touch is a wall mounted interface used to connect to the RTU Open to access the control information, read sensor values, and maintenance. This is an accessory interface that does not come with the RTU Open controller. Wire the Equipment Touch to the RTU Open’s J13 local access port. There are 2 password protected levels in the display (User and Admin). See the Equipment Touch Installation and Setup Guide for more information. See Appendix A of the guide for navigation and screen content.

Field Assistant — Field Assistant is a computer program included with the purchase of the Tech Tool Kit (USB-TKIT). This is a field Tech Tool to set-up, service, or download application software to the RTU Open controller and includes a USB Link Cable. The link cable connects a USB port to the J12 local access port. The Field Assistant’s menu structure is similar and functions the same as i-Vu® controls. See Fig. 109.

RTU Open Troubleshooting — Troubleshooting is accomplished by viewing the communication LEDs, see Fig. 93. The LEDs indicate if the controller is speaking to the devices on the network. The LEDs should reflect communication traffic based on the baud rate set. The higher the baud rate the more solid the LEDs will appear. See Table 30.

NOTE: Refer to the RTU Open Multi-Protocol Controller Controls, Start-Up, Operation, and Troubleshooting manual for complete configuration of RTU Open, operating sequences and troubleshooting information. Refer to the RTU Open v3 Integration Guide for details on configuration and troubleshooting of connected networks. Have a copy of these manuals available at unit start-up.
NOTE: Refer to the RTU Open Multi-Protocol Controller Controls, Start-Up, Operation and Troubleshooting manual for complete configuration of RTU Open, operating sequences and troubleshooting information. Refer to the RTU Open v3 Integration Guide for details on configuration and troubleshooting of connected networks. Have a copy of these manuals available at unit start-up.

OUTDOOR AIR ENTHALPY CONTROL — (P/N: 33CSENTHSW) — The enthalpy control is available as a field-installed accessory to be used with the EconoMi$er2 damper system. The outdoor air enthalpy sensor is part of the enthalpy control. The separate field-installed accessory return air enthalpy sensor (33CSENTSEN) is required for differential enthalpy control (see Fig. 110).

Locate the enthalpy control in the economizer next to the Actuator Motor. Locate two GRA leads in the factory harness and connect the gray lead labeled “ESL” to the terminal labeled “LOW”. See Fig. 110. Connect the enthalpy control power input terminals to economizer actuator power leads RED (connect to 24V) and BLK (connect to GND).

If this LED is on...	Status is...
Power | The RTU Open controller has power
Rx | The RTU Open controller is receiving data from the network segment
Tx | The RTU Open controller is transmitting data over the network segment
BO# | The binary output is active

The **Run** and **Error** LEDs indicate control module and network status.

<table>
<thead>
<tr>
<th>If Run LED shows...</th>
<th>And Error LED shows...</th>
<th>Status is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>2 flashes per second</td>
<td>Two or more devices on this network have the same MSTP network address</td>
<td></td>
</tr>
<tr>
<td>3 flashes, then off</td>
<td>Control module has just been formatted</td>
<td></td>
</tr>
<tr>
<td>4 flashes, then pause</td>
<td>Five minute auto-restart delay after system error</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Exec halted after frequent system errors or control programs halted</td>
<td></td>
</tr>
<tr>
<td>5 flashes per second</td>
<td>Exec start-up aborted, Boot is running</td>
<td></td>
</tr>
<tr>
<td>7 flashes per second</td>
<td>Firmware transfer in progress, Boot is running</td>
<td></td>
</tr>
<tr>
<td>14 flashes per second</td>
<td>Ten second recovery period after brownout</td>
<td></td>
</tr>
<tr>
<td>14 flashes per second, alternating with Run LED</td>
<td>Brownout</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 109 — PC Running Field Assistant

Table 30 — LEDs
(The LEDs on the RTU Open show the status of certain functions)

![Fig. 109 — PC Running Field Assistant](image)

![Fig. 110 — Enthalpy Switch (33CSENTHSW) Connections](image)

The outdoor enthalpy changeover setpoint is set at the enthalpy controller.

Differential Enthalpy Control — Enthalpy control is provided by sensing and comparing the outside air and return air enthalpy conditions. Install the outdoor air enthalpy control as described above. Add and install a return air enthalpy sensor.
Return Air Enthalpy Sensor (33SENTSEN) — The sensor is mounted in the return-air section of the economizer. The return air sensor is wired to the enthalpy controller (33CSENTHSW). See Fig. 111.

SMOKE DETECTORS — Smoke detectors are available as factory-installed options on 48TC models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

Units equipped with factory-optional Return Air smoke detectors require a relocation of the sensor module at unit installation. See Fig. 112 for the as shipped location.

COMPLETING INSTALLATION OF RETURN AIR SMOKE SENSOR

1. Unscrew the two screws holding the Return Air Smoke Detector assembly. See Fig. 113, Step 1.
2. Save the screws.
3. Turn the assembly 90 degrees and then rotate end to end. Make sure that the elbow fitting is pointing down. See Fig. 113, Step 2.
4. Screw the sensor and detector plate into its operating position using screws from Step 1. See Fig. 113, Step 3.
5. Connect the flexible tube on the sampling inlet to the sampling tube on the basepan.

ADDITIONAL APPLICATION DATA — Refer to the application data sheet titled “Factory-Installed Smoke Detector, for Small and Medium Rooftop Units 2 to 25 Tons” for discussions on additional control features of these smoke detectors including multiple unit coordination.
Step 13 — Adjust Factory-Installed Options

SMOKE DETECTORS — Smoke detector(s) will be connected at the Controls Connections Board, at terminals marked “Smoke Shutdown”. Cut jumper JMP 3 when ready to energize unit.

ECONOMISER IV OCCUPANCY SWITCH — Refer to Fig. 114 for general EconoMi$er IV wiring. External occupancy control is managed through a connection on the Controls Connections Board.

If external occupancy control is desired, connect a time clock or remotely controlled switch (closed for Occupied, open for Unoccupied sequence) at terminals marked OCCUPANCY. Cut jumper JMP 2 to complete the installation.

Step 14 — Install Accessories

Available accessories include:

- Roof curb
- Thru-base connection kit (must be installed before unit is set on curb)
- LP conversion kit
- Flue discharge deflector
- Manual outside air damper
- Two-position motorized outside air damper
- EconoMi$er IV (with control)
- EconoMi$er2 (without control/for external signal)
- Power exhaust
- Differential dry-bulb sensor (EconoMi$er IV)
- Outdoor enthalpy sensor
- Differential enthalpy sensor
- CO₂ sensor
- DDC interface (PremierLink™ controller)
- Louvered hail guard
- Motormaster® head pressure controls
- Phase monitor control

Refer to separate installation instructions for information on installing these accessories.

Step 15 — Check Belt Tension — Measure the belt span length as shown in Fig. 115. Calculate the required deflection by multiplying the belt span length by 1/64. For example, if the belt span length is 32 inches: 32 x 1/64 = 1/2 inch deflection.

BELT FORCE — DEFLECTION METHOD — Check the belt tension with a spring-force belt force deflection gauge (available from drive belt manufacturer).

1. Place a straightedge along the belt between the two pulleys. Measure the distance between the motor shaft and the blower shaft.
2. Set the tension gauge to the desired tension (see Table 1 in Fig. 115). Place the large O-ring at that point.
3. Press the tension checker downward on the belt until the large O-ring is at the bottom of the straightedge.
4. Adjust the belt tension as needed.

Adjust belt tension by loosing the motor mounting plate front bolts and rear bolt (see Fig. 116) and slide the plate towards the fan (to reduce tension) or away from the fan (to increase tension). Ensure the blower shaft and motor shaft are parallel to each other (pulleys aligned). Tighten all bolts securely when finished.
BELT TENSION METHOD — Requires belt tension gauge that measures tension in belt in units of lbs force.

Pre-Start and Start-Up — This completes the mechanical installation of the unit. Refer to the unit’s Service Manual for detailed Pre-Start and Start-Up instructions. Download the latest versions from HVAC Partners (www.hvacpartners.com).

Table 1

<table>
<thead>
<tr>
<th>BELT CROSS SECTION</th>
<th>SMALLEST SHEAVE DIAMETER</th>
<th>BELT DEFLECTION FORCE (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UNNOTCHED BELTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USED</td>
</tr>
<tr>
<td>A, AX</td>
<td>3.0-3.6</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>3.8-4.8</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>5.0-7.0</td>
<td>5.4</td>
</tr>
<tr>
<td>B, BX</td>
<td>3.4-4.2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4.4-5.6</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>5.8-8.6</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>BELT CONDITION</th>
<th>TENSION FORCE IN BELT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>100</td>
</tr>
<tr>
<td>Used</td>
<td>80</td>
</tr>
</tbody>
</table>

Fig. 115 — V-Belt Force Label

Fig. 116 — Belt Drive Motor Mounting
START-UP CHECKLIST — 48TC PACKAGED ROOFTOP UNITS WITH GAS HEAT AND ELECTRIC COOLING

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices, and adhere to the safety considerations/information as outlined in preceding sections of this Installation Instruction document.

I. PRELIMINARY INFORMATION

MODEL NO ___
JOB NAME ___
SERIAL NO ___
ADDRESS ___
START-UP DATE __
TECHNICIAN NAME ______________________________________
ADDITIONAL ACCESSORIES

II. PRE-START-UP

Verify that all packaging materials have been removed from unit (Y/N) _____
Verify installation of outdoor air hood (Y/N) _____
Verify installation of flue exhaust and inlet hood (Y/N) _____
Verify that condensate connection is installed per instructions verify that all electrical (Y/N) _____
Connections and terminals are tight (Y/N) _____
Verify gas pressure to unit gas valve is within specified range (Y/N) _____
Check gas piping for leaks (Y/N) _____
Check that indoor-air filters are clean and in place (Y/N) _____
Check that outdoor air inlet screens are in place (Y/N) _____
Verify that unit is level (Y/N) _____
Check fan wheels and propeller for location in housing/orifice and verify setscrew is tight (Y/N) _____
Verify that fan sheaves are aligned and belts are properly tensioned (Y/N) _____
Verify that scroll compressors are rotating in the correct direction (Y/N) _____
Verify installation of thermostat (Y/N) _____
Verify that crankcase heaters have been energized for at least 24 hours (Y/N) _____

III. START-UP

ELECTRICAL

Supply Voltage L1-L2 _____________ L2-L3 _____________ L3-L1 _____________
Compressor Amps 1 L1 _____________ L2 _____________ L3 _____________
Compressor Amps 2 L1 _____________ L2 _____________ L3 _____________
Supply Fan Amps L1 _____________ L2 _____________ L3 _____________

TEMPERATURES

Outdoor-air Temperature °F DB (Dry Bulb)
Return-air Temperature °F DB °F Wb (Wet Bulb)
Cooling Supply Air Temperature °F
Gas Heat Supply Air °F
PRESSURES
Gas Inlet Pressure IN. WG _____________ in. wg
Gas Manifold Pressure
 STAGE 1 _____________ in. wg
 STAGE 2 _____________ in. wg
Refrigerant Suction
 CIRCUIT A _____________ PSIG
 CIRCUIT B _____________ PSIG
Refrigerant Discharge
 CIRCUIT A _____________ PSIG
 CIRCUIT B _____________ PSIG
Verify Refrigerant Charge using Charging Charts (Y/N) _____

GENERAL
Economizer minimum vent and changeover settings to job requirements (if equipped) (Y/N) _____
Verify smoke detector unit shutdown by utilizing magnet test (Y/N) _____

IV. HUMIDI-MIZER® START-UP
STEPS
1. Check CTB for jumper 5, 6, 7 (Jumper 5, 6, 7 must be cut and open) (Y/N) _____
2. Open humidistat contacts (Y/N) _____
3. Start unit In cooling (Close Y1) (Y/N) _____

OBSERVE AND RECORD
A. Suction pressure _____________ PSIG
B. Discharge pressure _____________ PSIG
C. Entering air temperature _____________ ° F
D. Liquid line temperature at outlet or reheat coil _____________ ° F
E. Confirm correct rotation for compressor (Y/N) _____
F. Check for correct ramp-up of outdoor fan motor as condenser coil warms (Y/N) _____

4. Check unit charge per charging chart (Y/N) _____
(Jumper 32L Motormaster® temperature sensor during this check. Remove jumper when complete.)
5. Switch unit to high-latent mode (sub-cooler) by closing humidistat with Y1 closed (Y/N) _____

OBSERVE
A. Reduction in suction pressure (5 to 7 psi expected) (Y/N) _____
B. Discharge pressure unchanged (Y/N) _____
C. Liquid temperature drops to 50 to 55 F range (Y/N) _____
D. LSV solenoid energized (valve closes) (Y/N) _____

6. Switch unit to dehumid (reheat) by opening Y1 (Y/N) _____

OBSERVE
A. Suction pressure increases to normal cooling level
B. Discharge pressure decreases (35 to 50 psi) (Limited by Motormaster control)
C. Liquid temperature returns to normal cooling level
D. LSV solenoid energized (valve opens)
E. DSV solenoid energized, valve opens

7. With unit in dehumid mode close W1 compressor and outdoor fan stop; LSV and DSV solenoids de-energized (Y/N)
8. Open W1 restore unit to dehumid mode (Y/N) _____
9. Open humidistat input compressor and outdoor fan stop; LSV and DSV solenoids de-energized (Y/N) _____
10. Restore set-points for thermostat and humidistat (Y/N) _____

REPEAT PROCESS FOR 2 COMPRESSOR SYSTEMS