Table of Contents

Model Nomenclature 2 Electrical - Controls 16
General Information 3 User Interface 19
Physical Data 4 Installer Interface 20
Dimensional Data 5 Wiring Diagram Matrix 21
Installation 6 Typical Wiring Diagrams 22
Load Plumbing Installation 7 Unit Starting & Operating Conditions 26
Ground-Water Heat Pump Application 8 Unit & System Checkout 27
Water Quality Standards 9 Unit Start-Up Procedure 28
Ground-Loop Heat Pump Application 10 Preventive Maintenance 29
Electrical - Power Wiring 13 Warranty 30
Electrical - Low Voltage Wiring 13 Revision History 32
Model Nomenclature

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Y</td>
<td>E</td>
<td>W</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A</td>
<td>W</td>
<td>C</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Carrier Prefix

Residential Series

YEW = Puron High Temperature Heating Only Water-to-Water

Unit Size

010 (10kW)

Hydronic / Paint Options

- A = Stainless Steel & Pewter (Black), No Pump
- B = Stainless Steel & Pewter (Black), Load Pump w/Expansion Tank
- C = Stainless Steel & Pewter (Black), Load & Source Pump(s) w/Expansion Tanks
- D = Appliance White, No Pump
- E = Appliance White, Load Pump w/Expansion Tank
- F = Appliance White, Load & Source Pump(s) w/Expansion Tanks

Water Coil & DHW Options

- C = Copper Source & Braze Plate Load, No DHW
- D = Copper Source & Braze Plate Load, DHW w/3-Way Valve
- N = Cupro-Nickel Source & Braze Plate Load, No DHW
- P = Cupro-Nickel Source & Braze Plate Load, DHW w/3-Way Valve

Packaging

- 1 = Single Pack, Domestic

Revision Level

- 0 = Current

Voltage

- 3 = 208-230/60/1

Controls

- W = CXM
- Y = CXM w/VSFP

Safety

Warnings, cautions and notices appear throughout this manual. Read these items carefully before attempting any installation, service or troubleshooting of the equipment.

DANGER: Indicates an immediate hazardous situation, which if not avoided will result in death or serious injury. DANGER labels on unit access panels must be observed.

WARNING: Indicates a potentially hazardous situation, which if not avoided could result in death or serious injury.

CAUTION: Indicates a potentially hazardous situation or an unsafe practice, which if not avoided could result in minor or moderate injury or product or property damage.

NOTICE: Notification of installation, operation or maintenance information, which is important, but which is not hazard-related.

⚠️ WARNING! ⚠️

WARNING! Units are shipped with R-410A (Puron®) refrigerant. The Puron® Application and Service Manual should be read and understood before attempting to service refrigerant circuits with R-410A.

⚠️ WARNING! ⚠️

WARNING! To avoid the release of refrigerant into the atmosphere, the refrigerant circuit of this unit must be serviced only by technicians who meet local, state, and federal proficiency requirements.

⚠️ WARNING! ⚠️

WARNING! All refrigerant discharged from this unit must be recovered WITHOUT EXCEPTION. Technicians must follow industry accepted guidelines and all local, state, and federal statutes for the recovery and disposal of refrigerants. If a compressor is removed from this unit, refrigerant circuit oil will remain in the compressor. To avoid leakage of compressor oil, refrigerant lines of the compressor must be sealed after it is removed.

⚠️ CAUTION! ⚠️

CAUTION! To avoid equipment damage, DO NOT use these units as a source of heating or cooling during the construction process. The mechanical components and filters will quickly become clogged with construction dirt and debris, which may cause system damage.
GENERAL INFORMATION

Inspection
Upon receipt of the equipment, carefully check the shipment against the bill of lading. Make sure all units have been received. Inspect the carton or crating of each unit, and inspect each unit for damage. Assure the carrier makes proper notation of any shortages or damage on all copies of the freight bill and completes a common carrier inspection report. Concealed damage not discovered during unloading must be reported to the carrier within 15 days of receipt of shipment. If not filed within 15 days, the freight company can deny the claim without recourse. Note: It is the responsibility of the purchaser to file all necessary claims with the carrier.

Notify the Traffic Department of all damage within fifteen (15) days of shipment.

Storage
Equipment should be stored in its shipping carton in a clean, dry area. Store units in an upright position at all times. Stack units a maximum of 3 units high.

Unit Protection
Cover units on the job site with either shipping cartons, vinyl film, or an equivalent protective covering. Cap the open ends of pipes stored on the job site. In areas where painting, plastering, and/or spraying has not been completed, all due precautions must be taken to avoid physical damage to the units and contamination by foreign material. Physical damage and contamination may prevent proper start-up and may result in costly equipment clean-up.

Examine all pipes, fittings, and valves before installing any of the system components. Remove any dirt or trash found in or on these components.

Pre-Installation
Installation, Operation, and Maintenance instructions are provided with each unit. The installation site chosen should include adequate service clearance around the unit. Before unit start-up, read all manuals and become familiar with the unit and its operation. Thoroughly check the system before operation.

Prepare units for installation as follows:
1. Compare the electrical data on the unit nameplate with ordering and shipping information to verify that the correct unit has been shipped.
2. Keep the cabinet covered with the shipping carton until installation is complete and all plastering, painting, etc. is finished.
3. Verify refrigerant tubing is free of kinks or dents and that it does not touch other unit components.
4. Inspect all electrical connections. Connections must be clean and tight at the terminals.
5. Locate and verify any HWG or other accessory sensors located in the compressor section.
PHYSICAL DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor (qty)</td>
<td>1</td>
</tr>
<tr>
<td>Factory Charge R410A (oz) [kg]</td>
<td>88 [2.50]</td>
</tr>
</tbody>
</table>

Indoor/Load Water Connection Size

<table>
<thead>
<tr>
<th>IPT (in)</th>
<th>1</th>
</tr>
</thead>
</table>

Outdoor/Source Water Connection Size

<table>
<thead>
<tr>
<th>IPT (in)</th>
<th>1</th>
</tr>
</thead>
</table>

Domestic Hot Water Connection Size

<table>
<thead>
<tr>
<th>IPT (in)</th>
<th>1</th>
</tr>
</thead>
</table>

Maximum Working Pressure (Water Side)

<table>
<thead>
<tr>
<th>Description</th>
<th>PSI (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Unit (PSIG) [kPa]</td>
<td>500 [3445]</td>
</tr>
<tr>
<td>DHW Option (PSIG) [kPa]</td>
<td>500 [3445]</td>
</tr>
<tr>
<td>Internal Source Pump w/Expansion Tank (PSIG) [kPa]</td>
<td>45 [310]</td>
</tr>
<tr>
<td>Internal Load Pump w/Expansion Tank (PSIG) [kPa]</td>
<td>45 [310]</td>
</tr>
<tr>
<td>Weight - Operating, (lbs) [kg]</td>
<td>455 [207]</td>
</tr>
<tr>
<td>Weight - Packaged, (lbs) [kg]</td>
<td>470 [214]</td>
</tr>
</tbody>
</table>

- Dual isolation compressor mounting
- Balanced Port Expansion Valve (TXV)
- Insulated Source and Load Water Coils
Notes:
1. Front, Side, and Top access is preferred for service access. However, all components may be serviced from the front and Top access panels if side access is not available.
2. While clear access to all removable panels is not required, installer should take care to comply with all building codes and allow adequate clearance for future field service.

DIMENSIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall Cabinet</th>
<th>Water Connections</th>
<th>Electric Access Plugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>in.</td>
<td>26.8</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>cm.</td>
<td>68.1</td>
<td>65.1</td>
</tr>
</tbody>
</table>
INSTALLATION

50YEW Unit Location
These units are not designed for outdoor installation. Locate the unit in an INDOOR area that allows enough space for service personnel to perform typical maintenance or repairs.

The installation of water source heat pump units and all associated components, parts and accessories which make up the installation shall be in accordance with the regulations of ALL authorities having jurisdiction and MUST conform to all applicable codes. It is the responsibility of the Installing Contractor to determine and comply with ALL applicable codes and regulations.

LOAD PLUMBING INSTALLATION

50YEW Unit Load Plumbing
The applications are too varied to describe in this document, however some basic guidelines will be presented. All plumbing should conform to local codes and consider the following:

Wide temperature variation applications such as heating/cooling coils
- Employ piping materials that are rated for the maximum temperature and pressure combination. This excludes PVC for most heating applications.
- Insure load water flow in high temperature heating applications is at least 3 gpm per ton \([3.2 \text{ l/m per kW}]\) to improve performance and reduce nuisance high pressure faults.
- DO NOT employ plastic to metal threaded joints
- Utilize a pressure tank and air separator vent system to equalize pressure and remove air.

Swimming Pool Hot Tub Applications
- Recommended application includes a brazed plate heat exchanger to isolate pool water from the unit heat exchanger.

Potable Water Applications
- Insure load water flow in high temperature heating applications is at least 3 gpm per ton \([3.2 \text{ l/m per kW}]\) to improve performance and reduce nuisance high pressure faults.
- A secondary heat exchanger must always be used between the water-to-water heat pump and potable water tank. Either an indirect water heat or brazed plate heat exchanger (with a secondary pump) will isolate the potable water from the heating water.

Load Piping Connections
Load piping connections are designated ‘Load Water In and Out’ for the radiant heating system piping, and ‘DHW Water In and Out’ (optional) for connection to the domestic hot water piping. Any unused piping connections on the load side of the 50YEW unit will allow spillage of the load circuit fluid, as the radiant and DHW circuits are connected internally.

If a unit is ordered with the DHW option and is not being connected to a radiant heating system, the ‘Load Water In and Out’ (radiant heating circuit) connections must be connected to the ‘DHW In and Out’ piping using tees as shown in Figure 1a. Failure to do so will lead to nuisance high-pressure faults.

Figure 1a: 50YEW DHW Only Piping
LOAD PLUMBING INSTALLATION

Figure 1b: 50YEW Typical Load Piping

NOTES:
1. Place air vent at the highest point in the system. If internal expansion tanks are installed, only an air vent is required.
2. Thermistors should be installed in an immersion well. Locate thermistor in the bottom half of the tank.
3. If electric water heat is used instead of buffer tank, see drawing 2-7.
4. P/T (pressure/temperature) ports are internal for 50YEW units on load and source connections.
5. Other components (additional ball valves, unions, etc.) may be required for ease of service. This drawing shows only minimum requirements. Your specific installation will dictate final component selections.
6. Buffer tank must be approved as a heating vessel.
7. Local code supersedes any piping arrangements or components shown on this drawing.

03Oct07
GROUND-WATER HEAT PUMP SYSTEMS

Typical open loop piping is shown in Figure 2. Shut off valves should be included in case of servicing. Boiler drains or other valves should be ‘tee’d’ into the line to allow acid flushing of just the heat exchanger. Pressure temperature plugs should be used so that flow and temperature can be measured. Piping materials should be limited to PVC SCH80 or copper. Due to the pressure and temperature extremes, PVC SCH40 is not recommended. Water quantity should be plentiful and of good quality. Consult Table 2 for water quality guidelines. The unit can be ordered with either a copper or cupro-nickel heat exchanger. Copper is recommended for closed loop systems and open loop ground water systems that are not high in mineral content or corrosiveness. In conditions anticipating heavy scale formation or in brackish water, a cupro-nickel heat exchanger is recommended. In ground water situations where scaling could be heavy or where biological growth such as iron bacteria will be present, a closed loop system is recommended. Heat exchanger coils may over time lose heat exchange capabilities due to a build up of mineral deposits inside. These can be cleaned only by a qualified service mechanic as acid and special pumping equipment are required.

Desuperheater coils can likewise become scaled and possibly plugged. In areas with extremely hard water, the homeowner should be informed that the heat exchanger may require occasional acid flushing.

Expansion Tank and Pump
Use a closed, bladder-type expansion tank to minimize mineral formation due to air exposure. The expansion tank should be sized to handle at least one minute run time of the pump to prevent premature pump failure using its drawdown capacity rating. The pump should be sized to the home’s domestic water load (5-9 gpm [19-34 l/m]) plus the heat pump water load. Discharge water from the unit is not contaminated in any manner and can be disposed of in various ways depending on local building codes; i.e. recharge well, storm sewer, drain field, adjacent stream or pond, etc. Most local codes forbid the use of sanitary sewer for disposal. Consult your local building and zoning department to assure compliance in your area.

Water Control Valve
Note the placement of the water control valve. Always maintain water pressure in the heat exchanger by placing water control valves at the outlet of the unit to prevent mineral precipitation. Pilot operated or Taco slow closing valve’s solenoid valves are recommended to reduce water hammer. If water hammer persists, a mini-expansion tank can be mounted on the piping to help absorb the excess hammer shock. Insure that the total ‘VA’ draw of the valve can be supplied by the unit transformer. For instance the Taco slow closing valve can draw up to 35VA. This can overload smaller 40 or 50 VA transformers depending on the other controls employed. A typical pilot operated solenoid valve draws approximately 15VA. Note the special wiring diagram of the AVM valve (Figure 9).

Flow Regulation
Flow regulation can be accomplished by two methods. First, most water control valves have a built in flow adjustment. By measuring the pressure drop through the unit heat exchanger, flow rate can be determined and compared to Table 7. Simply adjust the water control valve until the desired flow is achieved. Secondly, a flow control device may be installed. The devices are typically an orifice of plastic material that is designed to allow a specified flow rate. These are mounted on the outlet of the water control valve. On occasion, these valves can produce a velocity noise that can be reduced by applying some back pressure. This is accomplished by slightly closing the leaving isolation valve of the well water setup.

Low Temperature Cutout
The water low temperature cutout setpoint should be activated to avoid freeze damage to the unit. Consult the low temperature cutout section of the controls description for instructions.

⚠️ CAUTION! ⚠️
CAUTION! Many units are installed with a factory or field supplied manual or electric shut-off valve. DAMAGE WILL OCCUR if shut-off valve is closed during unit operation. A high pressure switch must be installed on the heat pump side of any field provided shut-off valves and connected to the heat pump controls in series with the built-in refrigerant circuit high pressure switch to disable compressor operation if water pressure exceeds pressure switch setting. The field installed high pressure switch shall have a cut-out pressure of 235 psig [1620 kPa] and a cut-in pressure of 190 psig [1310 kPa]. This pressure switch can be ordered with a 1/4” internal flare connection as part number 39B0005N01.

⚠️ CAUTION! ⚠️
CAUTION! Refrigerant pressure activated water regulating valves should never be used with this equipment.
Water Quality Standards

<table>
<thead>
<tr>
<th>Water Quality Parameter</th>
<th>HX Material</th>
<th>Closed Recirculating</th>
<th>Open Loop and Recirculating Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH/Calcium Hardness Method</td>
<td>All</td>
<td>-</td>
<td>pH < 7.5 and Ca Hardness <100ppm</td>
</tr>
<tr>
<td>Ryznar Stability Index</td>
<td>All</td>
<td>-</td>
<td>6.0 - 7.5</td>
</tr>
<tr>
<td>Langelier Saturation Index</td>
<td>All</td>
<td>-</td>
<td>-0.5 to +0.5</td>
</tr>
<tr>
<td>Iron Fouling (Ferrous)</td>
<td>All</td>
<td>-</td>
<td><0.2 ppm (Ferrous)</td>
</tr>
<tr>
<td>Iron Fouling (Bacterial Iron potential)</td>
<td>All</td>
<td>-</td>
<td><0.5 ppm of Oxygen</td>
</tr>
<tr>
<td>Corrosion Prevention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>All</td>
<td>6 - 8.5</td>
<td>Monitor/treat as needed</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H_2S)</td>
<td>All</td>
<td>-</td>
<td><0.5 ppm</td>
</tr>
<tr>
<td>Ammonia ion as hydroxide, chloride, nitrate and sulfate compounds</td>
<td>All</td>
<td>-</td>
<td><0.5 ppm</td>
</tr>
<tr>
<td>Maximum Chloride Levels</td>
<td>Copper</td>
<td>-</td>
<td><20 ppm</td>
</tr>
<tr>
<td></td>
<td>CuproNickel</td>
<td>-</td>
<td><150 ppm</td>
</tr>
<tr>
<td></td>
<td>304 SS</td>
<td>-</td>
<td><400 ppm</td>
</tr>
<tr>
<td></td>
<td>316 SS</td>
<td>-</td>
<td><1000 ppm</td>
</tr>
<tr>
<td></td>
<td>Titanium</td>
<td>-</td>
<td>>1000 ppm</td>
</tr>
<tr>
<td>Erosion and Clogging</td>
<td>All</td>
<td><10 ppm of particles and a maximum velocity of 6 fps [1.8 m/s]. Filtered for maximum 800 micron [800mm, 20 mesh] size.</td>
<td><10 ppm (<1 ppm “sandfree” for reinjection) of particles and a maximum velocity of 6 fps [1.8 m/s]. Filtered for maximum 800 micron [800mm, 20 mesh] size. Any particulate that is not removed can potentially clog components.</td>
</tr>
</tbody>
</table>

Notes:
- NR - Application not recommended.
- "— No design Maximum.
- * - Closed Recirculating system is identified by a closed pressurized piping system.
- R - Recirculating open wells should observe the open recirculating design considerations.
- * * - No design Maximum.
GROUND-LOOP HEAT PUMP APPLICATIONS

Piping Installation
The typical closed loop ground source system is shown in Figure 3. All earth loop piping materials should be limited to only polyethylene fusion in inground sections of the loop. Galvanized or steel fitting should not be used at any time due to their tendency to corrode. All plastic to metal threaded fittings should be avoided due to their potential to leak in earth coupled applications and a flanged fitting substituted. P/T plugs should be used so that flow can be measured using the pressure drop of the unit heat exchanger in lieu of other flow measurement means. Earth loop temperatures can range between 25-110°F [-3.9 - 43.3°C]. Upon completion of the ground loop piping, pressure test the loop to assure a leak free system.

Horizontal Systems: test individual loops as installed. Test entire system when all loops are assembled.
Vertical U-Bends and Pond Loop Systems: test vertical U-bends and pond loop assemblies prior to installation with a hydrostatic test pressure of at least 100 psi [689 kPa].

Flushing the Earth Loop
Once piping is completed between the unit, flow center and the ground loop (Figure 3), final purging and charging of the loop is needed. A flush cart (at least a 1.5 hp [1.1 kW] pump) is needed to achieve adequate flow velocity in the loop to purge air and dirt particles from the loop itself. An antifreeze solution is used in most areas to prevent freezing. All air and debris must be removed from the earth loop piping system before operation. Flush the loop with a high volume of water at a high velocity (2 fps [0.6 m/s] in all piping) both directions. The steps below must be followed for proper flushing. Fill loop with water from a garden hose through flush cart before using flush cart pump to ensure an even fill. Once full, do not allow the water level in the flush cart tank to drop below the pump inlet line or air can be pumped back out to the earth loop. Try to maintain a fluid level in the tank above the return tee so that air cannot be continuously mixed back into the fluid. 50 psi [345 kPa] surges can be used to help purge air pockets by simply shutting off the return valve going into the flush cart reservoir. This ‘dead heads’ the pump to 50 psi [345 kPa]. To dead head the pump until maximum pumping pressure is reached, open the valve back up and a pressure surge will be sent through the loop to help purge air pockets from the piping system. Notice the drop in fluid level in the flush cart tank. If air is purged from the system, the level will drop only 1-2 [25-50mm] inches in a 10" [254mm] diameter PVC flush tank (about a half gallon) since liquids are incompressible. If the level drops more than this, flushing should continue since air is still being compressed in the loop fluid. Do this a number of times.

When the fluid level drops less than 1-2" [25-50mm] in a 10" [254mm] diameter tank the flow can be reversed. Finally the dead head test should be checked again for an indication of air in the loop. This fluid level drop is your only indication of air in the loop.

<table>
<thead>
<tr>
<th>Table 3: Approximate Fluid Volume (gal.) per 100' of Pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>1"</td>
</tr>
<tr>
<td>1.25"</td>
</tr>
<tr>
<td>2.5"</td>
</tr>
<tr>
<td>Rubber Hose</td>
</tr>
<tr>
<td>1"</td>
</tr>
<tr>
<td>Polyethylene</td>
</tr>
<tr>
<td>3/4" IPS SDR11</td>
</tr>
<tr>
<td>1" IPS SDR11</td>
</tr>
<tr>
<td>1.25" IPS SDR11</td>
</tr>
<tr>
<td>1.5" IPS SDR11</td>
</tr>
<tr>
<td>2" IPS SDR11</td>
</tr>
<tr>
<td>1.25" IPS SCH40</td>
</tr>
<tr>
<td>1.5" IPS SCH40</td>
</tr>
<tr>
<td>2" IPS SCH40</td>
</tr>
<tr>
<td>Unit Heat Exchanger</td>
</tr>
<tr>
<td>Flush Cart Tank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: Antifreeze Percentages by Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Methanol</td>
</tr>
<tr>
<td>100% USP food grade Propylene Glycol</td>
</tr>
<tr>
<td>Ethanol*</td>
</tr>
</tbody>
</table>

* Must not be denatured with any petroleum based product
Antifreeze may be added before, during, or after the flushing procedure. However, depending upon which time is chosen, antifreeze could be wasted when emptying the flush cart tank. See antifreeze section for more details. Loop static pressure will fluctuate with the seasons. Pressures will be higher in the winter months than during the cooling season. This fluctuation is normal and should be considered when charging the system initially. Run the unit in either heating or cooling for a number of minutes to condition the loop to a homogenous temperature. This is a good time for tool cleanup, piping insulation etc. Then final flush and pressurize the loop to a static pressure of 40-50 psi [275-345 kPa] (winter) 15-20 psi [100-138 kPa] (summer).

After pressurization, be sure to remove the plug in the end of the Grundfos loop pump motor(s) to allow trapped air to be discharged and to insure the motor housing has been flooded. This is not required for Taco circulators. Insure the loop flow center provides adequate flow through the unit by checking pressure drop across the heat exchanger and comparing it to the figures shown in Table 7.

Antifreeze
In areas where minimum entering loop temperatures drop below 40°F [4.4°C] or where piping will be routed through areas subject to freezing, antifreeze is needed. Alcohols and glycols are commonly used as antifreezes, however your local territory manager should be consulted for the antifreeze best suited to your area. Freeze protection should be maintained to 15°F [-9.4°C] below the lowest expected entering loop temperature. For example, if 30°F [-1.1°C] is the minimum expected entering loop temperature, the leaving loop temperature would be 25-22°F [-3.9 to -5.6°C] and freeze protection should be at 15°F [-9.4°C] (30°F-15°F=15°F). All alcohols should be premixed and pumped from a reservoir outside of the building when possible or introduced under water level to prevent fuming. Initially calculate the total volume of fluid in the piping system using Table 3. Then use the percentage by volume shown in Table 4 for the amount of antifreeze. Antifreeze concentration should be checked from a well mixed sample using a hydrometer to measure specific gravity.

Low Water Temperature Cut-Out Setting
When an antifreeze is selected the low temperature limit setpoint should be switched to the lower setting to avoid nuisance faults. Consult Low Water Temperature Cut-Out Setting in the controls section for more information.

Figure 3: Typical Earth Loop Connection.
ELECTRICAL - LINE VOLTAGE

⚠️ WARNING! ⚠️

WARNING! To avoid possible injury or death due to electrical shock, open the power supply disconnect switch and secure it in an open position during installation.

⚠️ WARNING! ⚠️

WARNING! To avoid possible injury or death due to electrical shock, open the power supply disconnect switch and secure it in an open position during installation.

⚠️ CAUTION! ⚠️

CAUTION! Use only copper conductors for field installed electrical wiring. Unit terminals are not designed to accept other types of conductors.

General Line Voltage Wiring

Be sure the available power is the same voltage and phase as that shown on the unit serial plate. Line and low voltage wiring must be done in accordance with local codes or the National Electric Code, whichever is applicable.

Table 5: Electrical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Code</th>
<th>Voltage</th>
<th>Min/Max Voltage</th>
<th>Compressor Qty</th>
<th>Load FLA</th>
<th>Source Pump (1) FLA</th>
<th>Source Pump (2) FLA</th>
<th>Total Unit FLA</th>
<th>Min Circuit Amps</th>
<th>Max Fuse HACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>50YEW010</td>
<td>3</td>
<td>208-230/60/1</td>
<td>197/254</td>
<td>1</td>
<td>20.7</td>
<td>-</td>
<td>-</td>
<td>20.7</td>
<td>25.9</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
<td>-</td>
<td>21.8</td>
<td>26.9</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
<td>1.07</td>
<td>23.9</td>
<td>29.1</td>
<td>45</td>
</tr>
</tbody>
</table>

Three Phase units require a neutral wire.

50YEW Power Connection

Line voltage connection is made by connecting the incoming line voltage wires to the power block as shown in Figures 5 and 6. Consult Table 5 for correct fuse size.

All field installed wiring, including electrical ground, must comply with the National Electrical Code as well as all applicable local codes.

Refer to the unit wiring diagrams for fuse sizes and a schematic of the field connections which must be made by the installing (or electrical) contractor.

Consult the unit wiring diagram located on the inside of the compressor access panel to ensure proper electrical hookup.

All final electrical connections must be made with a length of flexible conduit to minimize vibration and sound transmission to the building.

208 Volt Operation

All 208-240 Volt units are factory wired for 240 Volt. The transformers may be switched to 208V operation as illustrated on the wiring diagram. By switching the Red (208V) and the Orange (240V) at the terminal.
Figure 6: 50YEW 60Hz Line and Low Voltage
ELECTRICAL - LOW VOLTAGE

Low Voltage Connections
The thermistors (sensors) and other low voltage wiring should be connected to the 12 position terminal strip in the 50YEW control box. See figures 5 and 6 for details.

Low Water Temperature Cutout - FP1
The CXM/DXM control allows the field selection of source fluid low temperature cutout points. The factory setting of FP1 is set for water (30°F [-1.1°C]). In cold temperature applications jumper JW3 (FP1 - antifreeze 10°F [-12.2°C]) should be clipped as shown in Figure 7 to change the setting to 10°F [-12.2°C], a more suitable temperature when using antifreezes.

Figure 7: Changing FP1-Low Water Temperature Cutout Setpoint

Given diagram showing the connection points and setpoints for the low water temperature cutout.

Accessory Connections
A terminal paralleling the compressor contactor coil has been provided on the CXM/DXM control of the 50YEW unit. "A" has been provided to control accessory devices, such as water valves, electronic air cleaners, humidifiers, etc. Note: This terminal should be used only with 24 Volt signals and not line voltage signals. This signal operates with the compressor contactor. See Figure 8 or the wiring schematic for details.

Figure 8: Accessory Wiring

Terminal Strip

Water Solenoid Valves
Figures 9a and 9b illustrate a typical slow closing water control valve wiring. A slow closing valve may be required to prevent water hammer. When using an AVMB -Taco Slow Closing valves on 50YEW Series equipment Figure 9a wiring should be utilized. The valve takes approximately 60 seconds to open (very little water will flow before 45 seconds) and it activates the compressor only after the valve is completely opened (by closing its end switch). Only relay or triac based electronic thermostats should be used with the AVMB valve. When wired as shown, the valve will operate properly with the

1. The valve will remain open during a unit lockout.
2. The valve will draw approximately 25-35 VA through the “Y” signal of the thermostat.
ELECTRICAL - LOW VOLTAGE

Figure 9a: Well Water AVMB Valve Wiring

CAUTION!
Many units are installed with a factory or field supplied manual or electric shut-off valve. DAMAGE WILL OCCUR if shut-off valve is closed during unit operation. A high pressure switch must be installed on the heat pump side of any field provided shut-off valves and connected to the heat pump controls in series with the built-in refrigerant circuit high pressure switch to disable compressor operation if water pressure exceeds pressure switch setting. The field installed high pressure switch shall have a cut-out pressure of 235 psig [1620 kPa] and a cut-in pressure of 190 psig [1310 kPa]. This pressure switch can be ordered with a 1/4” internal flare connection as part number 39B0005N01.

Figure 9b: Taco SBV Valve Wiring

CAUTION! Refrigerant pressure activated water regulating valves should never be used with this equipment.

*Valve must be wired in between the CXM and MPC boards. Remove the yellow wire from the CXM board and connect it to terminal 2 on the valve. Add a new wire from terminal 3 to the Y terminal at the CXM board, and a jumper wire from terminal 1 to terminal R at the CXM board as shown above.
ELECTRICAL - CONTROLS

Controls
User interface: Figure 10 shows the factory installed and wired panel-mounted user interface for customizing the MPC programming. A large dot-matrix style 2” x 2” [5 x 5 cm] back-lit display is controlled by four arrow keys and a select key. The main screen, as shown in figure 11, displays current outdoor and water temperatures, and allows the user to change settings by selecting one of the menus from the bottom of the screen (see figure 13 50YEW User Interface Menu). A special installer set up mode allows the technician to change some of the default MPC parameters. The installer menu may only be accessed when the unit is placed in the off mode. Holding the up and down buttons at the same time will cause the interface to enter the installer setup mode. See figure 14 (interface installer menu) The user interface includes a time schedule for DHW generation, Fahrenheit/Celsius selection, vacation mode for DHW, and other user preference options.

Figure 10: 50YEW User Interface

![User Interface Diagram]

Figure 11: 50YEW User Interface Main Screen

08 SEPT 2007 8:45 AM
OUTDOOR 93°
BUFFER TANK 73°
HOT WATER SETPOINT 125°
MODE PROGRAM MENU

50YEW Series Control Features
The advantage of a programmable controller, as outlined above, is the ability to integrate complex decision-making tasks with the standard heat pump (CXM) controls and communicate with a user interface. Below is a list of standard features that are included in the 50YEW series controls.

CAUTION!
CAUTION: Maximum leaving water temperature of the 50YEW series equipment is 145°F [63°C]. For domestic hot water tank temperatures or heating buffer tank temperatures above 130°F [54°C], pump and pipe sizing is critical to insure that the flow rate through the heat pump is sufficient to maintain leaving water temperatures below the maximum temperature, and to provide water flow rates within the ranges shown in the performance section of this manual.

Outdoor temperature reset: The heat pump capacity and water temperature delivery to the heating system must be designed for local weather conditions, usually at the 99.6% outdoor temperature. Therefore, 99.6% of the heating season, the heating load is less than it is at design conditions. As the outdoor temperature decreases, the heat loss of the structure increases, which requires more capacity from the heating system. If the water temperature is reduced as the outdoor air temperature increases (and vise-versa), the heat pump operates at higher COP most of the year. The MPC has a built in algorithm that adjusts the buffer tank temperature based upon outdoor air temperature to maximize efficiency and comfort. Temperature settings may be adjusted at the user interface if factory defaults are not sufficient.

The base setpoint for energizing the compressor in the heating mode is determined by subtracting one-half the heating differential value (HTD) from the buffer tank heating temperature setpoint. The HTD is the differential used for controlling setpoint. For example, if the buffer tank setpoint is 100°F [38°C], and the HTD is 6°F [3°C], the compressor will be energized at 97°F [36°C] and will be turned off at 103°F [39°C]. The HTD is the difference between the compressor “call” (97°F [36°C]) and the “satisfied” (103°F [39°C]) temperature. The buffer tank temperature may then be reduced by the outdoor temperature reset function, depending on the current outdoor air temperature (OAT) value. The valid range for the buffer tank heating setpoint is 70-140°F [21-60°C], with a default value of 100°F [38°C]. The valid range for the heating differential value (HTD) is 4-20°F [2-11°C], adjustable in 2°F [1°C] increments, with a default value of 6°F [3°C].
There are four outdoor reset variables used for reducing the buffer tank setpoint. The outdoor design temperature (ODT) is the OAT above which setpoint reduction begins. The valid range for ODT is -40°F to 50°F [-40°C to 10°C], with a default value of 0°F [-18°C]. The maximum design buffer tank temperature (MaxBT) is the maximum desired buffer tank setpoint at the outdoor design temperature. The valid range for MaxBT is 80-140°F [27-60°C], with a default value of 130°F [54°C]. The building balance point temperature (the temperature at which heating is no longer needed) is the OAT at which maximum setpoint (MaxBT) reduction will occur. The valid range for building balance point is 50-70°F [10-21°C], with a default value of 60°F [16°C]. The minimum design water temperature is the minimum desired buffer tank setpoint at the building balance point temperature. The valid range for minimum buffer tank temperature is 70°F-120°F [21-60°C], with a default value of 70°F [21°C]. If an OAT sensor is not detected (or if a thermistor error has occurred), the buffer tank setpoint will not be reduced based on the OAT value (i.e. the controller will use the buffer tank setpoint as described in the previous paragraph).

Figure 12 shows an example outdoor temperature reset curve for a climate that has an outdoor design temperature of -4°F [-20°C]. At design temperature, the radiant floor system needs 126°F [52°C] water. However, when the outdoor temperature is 68°F [20°C], the home needs no heating (building balance point). In between -4°F and 68°F [-20°C and 20°C], the water temperature in the buffer tank is adjusted accordingly. For homes that are well insulated and tightly sealed, the building balance point may be 55°F [13°C] or lower, so the slope of the line changes based upon settings at the user interface. The radiant floor design temperature will also change the slope of the line. If tighter pipe spacing is used, for example, the water temperature at the outdoor design temperature may only be 100°F [38°C]. Again, as the settings are changed at the user interface, the slope of the line will change. As mentioned earlier, the lower the heating water temperature at design conditions, the higher the efficiency (COP) of the heat pump. The combination of a lower design temperature and outdoor temperature reset can result in a significant impact on operating costs.

<table>
<thead>
<tr>
<th>Setting Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Tank Set Point</td>
<td>70-140°F [21-60°C]</td>
<td>100°F [38°C]</td>
</tr>
<tr>
<td>Buffer Tank Deadband</td>
<td>4-20°F [2-11°C]</td>
<td>6°F [3°C]</td>
</tr>
<tr>
<td>Outdoor Design Temp</td>
<td>-40-50°F [-40-10°C]</td>
<td>0°F [-18°C]</td>
</tr>
<tr>
<td>Maximum Design Water Temp</td>
<td>60-140°F [27-60°C]</td>
<td>130°F [54°C]</td>
</tr>
<tr>
<td>Minimum Design Water Temp</td>
<td>70-120°F [21-49°C]</td>
<td>70°F [21°C]</td>
</tr>
<tr>
<td>Building Balance Point Temp</td>
<td>50-70°F [10-21°C]</td>
<td>60°F [16°C]</td>
</tr>
</tbody>
</table>

The maximum design water temperature must be equal the buffer tank setpoint. The buffer tank setpoint will override the maximum design temperature if they are entered with different values.
Warm weather shutdown (WWSD): Radiant floor systems are the most comfortable type of heating available today. However, they do have one disadvantage – quickly switching from heating to cooling is not possible due to the mass heat storage in the slab. For example, in the spring or fall, there could be times where heating is required at night, but cooling is required during the day. With a warm floor, the cooling system has to work much harder to cool the space. WWSD shuts down the water-to-water heat pump at a pre-determined outdoor air temperature (adjustable at the user interface). When a water-to-air heat pump is used for space cooling, this unit can be enabled when WWSD is active, allowing the water-to-air heat pump to heat via forced air during the shoulder seasons, avoiding the warm slab/cooling dilemma (see cooling enable, below). A normally closed contact is provided in the 50YEW unit to de-energize the heating system controls (e.g. radiant floor control panel) during WWSD. WWSD does not affect DHW heating. In other words, the water-to-water unit can still operate for generating DHW, even if the heating distribution (e.g. radiant floor) system is disabled.

The WWSD activation (i.e. when the WWSD feature is enabled) outdoor air temperature range is 40-100°F [4-38°C] with a default value of 70°F [21°C]. The WWSD deactivation (i.e. when the radiant heating returns to operating mode) temperature range is 35-95°F [2-35°C] with a default value of 65°F [18°C] and a minimum difference between activation and deactivation temperatures of 5°F [3°C]. If the outdoor air temperature (OAT) rises above the activation temperature, the cooling enable signal (see below) is enabled, and the control no longer controls the buffer tank temperature. If the OAT falls below the deactivation temperature, the control resumes monitoring the buffer tank temperature.

Cooling enable: Cooling enable is tied to the WWSD feature. If desired, the water-to-air unit controls can be wired to the 50YEW unit controls, which will allow the water-to-air unit to operate during WWSD, but will disable the water-to-air unit when the 50YEW unit is not in WWSD mode. When a heat pump thermostat is connected to the water-to-air unit, forced air heating may be used for the shoulder seasons, allowing quick heating to cooling changeover. If this feature is used, the consumer will easily be able to tell when WWSD is enabled because the water-to-air unit thermostat will only be active during WWSD. Otherwise, the water-to-air unit thermostat will be disabled, indicating that the consumer should utilize the hydronic heating (e.g. radiant floor) thermostat.

Second stage heating (backup boiler): Optimal heat pump sizing may not include a water-to-water heat pump that can handle 100% of the heating load. When a backup boiler is used to supplement the heating capacity, a 24VAC output from the 50YEW unit can energize the boiler. The boiler control box simply needs a relay that can be used to interface with the 50YEW unit.

DHW priority: By default, DHW heating always takes priority over space heating. Normally, the hot water load will be satisfied quickly, and the unit can then switch back to space heating.

Time schedule: DHW temperatures may be adjusted during occupied/unoccupied times via the user interface to save energy costs.

Vacation mode: DHW generation may be disabled when the user interface is placed in vacation mode. A return date and time may be set to restore normal DHW temperatures.

Emergency DHW generation: If the 50YEW unit is locked out, a 24VAC signal can be sent to a contactor at the water heater to allow the operation of the electric elements and associated thermostat.

Enhanced heat pump lockouts: The CXM board locks out the compressor any time a lockout condition occurs. The MPC reads the lockouts from the CXM, and reports the condition to the user interface. The user interface changes from a blue backlight to a red backlight, indicating a lockout. The actual lockout is reported (e.g. High Pressure) at the interface. In addition to the standard CXM faults, the MPC checks for bad thermistors and high compressor discharge temperature, which are also reported at the user interface.

Pump control: If the optional load and source pump(s) are selected, the control energizes the pumps any time the compressor is operating.

Variable speed floor pump (VSFP) output: Some radiant floor systems utilize a variable speed pump on the floor system, which changes flow based upon the number of zones open or closed. Since the pump has built-in controls, only a power supply is needed. An optional power terminal is available for VSFP applications.
Figure 13: 50YEW User Interface Menu

- Set Date and Time
- Daylight Savings
- Set Month, Day, Yr, Hr, Min
- Vacation Hold Date Then Time
- Events Per Day
- 2nd Stage Heat
- WM. Weather Shutdown
- Main Screen
- Program Menu
- Mode
- Main Menu
- Program Screen
- Screen Settings
- Temperature Offsets
- Temp Adjust Lockout
- Total Keypad Lockout
- Security Lockout
- Fault Status
- Temperature Status
- Clear Fault History
- Fault Description
- F or C
- 12 or 24 Hour Clock
- Language
- Contrast
- Backlight
- Service Information
- Operating Mode
Figure 14: 50YEW Interface Installer Menu
<table>
<thead>
<tr>
<th>Model</th>
<th>Diagram Number</th>
<th>Voltage</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>50YEW010</td>
<td>96B0108N05</td>
<td>230/60/1</td>
<td>-</td>
</tr>
<tr>
<td>50YEW010</td>
<td>96B0108N06</td>
<td>230/60/1</td>
<td>VSFP</td>
</tr>
</tbody>
</table>
Typical Wiring Diagram - 50YEW 230/60/1 Units

Low Voltage Terminal Strip Connection Identification

<table>
<thead>
<tr>
<th>TERMINAL</th>
<th>LABEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OL</td>
<td>Outdoor Air Thermostat Connection</td>
</tr>
<tr>
<td>2</td>
<td>B7/62</td>
<td>Super T&R Sensing Connection</td>
</tr>
<tr>
<td>3</td>
<td>D1</td>
<td>Super T&R Thermostat Connection</td>
</tr>
<tr>
<td>4</td>
<td>CH</td>
<td>Water Heater Tank Thermostat Connection</td>
</tr>
<tr>
<td>5</td>
<td>CN</td>
<td>Water Heater Tank Thermostat Connection</td>
</tr>
<tr>
<td>6</td>
<td>P5</td>
<td>Radiant Floor Vacuum Interrupt (Terminals 5 & 7) — Wye</td>
</tr>
<tr>
<td>9</td>
<td>M7</td>
<td>Return Signal to Control Unit</td>
</tr>
<tr>
<td>10</td>
<td>M10</td>
<td>Remote Bypass Control Dec/En Interface (Terminal 5)</td>
</tr>
<tr>
<td>11</td>
<td>M11</td>
<td>Control Signal to Enable Optional Emergency Electric Water Heater</td>
</tr>
<tr>
<td>12</td>
<td>M12</td>
<td>Common for External Relay Ceil</td>
</tr>
<tr>
<td>13</td>
<td>M13</td>
<td>Radiant Floor Vacuum Interrupt (Terminals 5 & 7) — Wye</td>
</tr>
</tbody>
</table>

Input#

<table>
<thead>
<tr>
<th>INPUT #</th>
<th>INPUT NAME (SILK SCREEN)</th>
<th>INPUT FUNCTION (PROGRAM)</th>
<th>ANALOG SIGNAL</th>
<th>DIGITAL SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E1L & E2E</td>
<td>Lockout Alarm</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>E1K</td>
<td>Polling Loss Signal</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>L1L1 & L2E</td>
<td>Common Return</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>L1C1 & L2E</td>
<td>Common Return</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>5</td>
<td>D5 & B Therm</td>
<td>D5 & B Therm</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output#

<table>
<thead>
<tr>
<th>OUTPUT #</th>
<th>OUTPUT NAME (SILK SCREEN)</th>
<th>OUTPUT FUNCTION (PROGRAM)</th>
<th>OUTPUT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V1</td>
<td>Commercial Pumps</td>
<td>V1</td>
</tr>
<tr>
<td>2</td>
<td>V2</td>
<td>Weather</td>
<td>V2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2nd Stage Heating</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>3rd Stage Heating</td>
<td>W</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>Emergency Signal</td>
<td>E</td>
</tr>
</tbody>
</table>

See Application Manual for Field Wiring
UNIT STARTING & OPERATING CONDITIONS

Operating Limits
Environment – This unit is designed for indoor installation only.
Power Supply – A voltage variation of +/− 10% of nameplate utilization voltage is acceptable.

Starting Conditions
50YEW Units – Units start and operate in an ambient of 45°F [7.2°C] with entering Load Water at 50°F [10°C], entering Source Water at 30°F [-1.1°C] and both Load and Source Water at the stated flow rates of 3 gpm per ton for initial winter start-up.

Notes:
1. These are not normal or continuous operating conditions. It is assumed that winter start-up is to bring the building space up to occupancy temperatures.
2. Voltage utilization range complies with ARI Standard 110.

Determination of operating limits is dependent primarily upon three factors: 1) entering load temperature, 2) entering source temperature and 3) ambient temperature. When any one of these factors is at minimum or maximum levels, the other two factors should be at normal levels to ensure proper unit operation.

Extreme variations in temperature and humidity and corrosive water will adversely affect unit performance, reliability, and service life.

Table 7: Operating Limits

<table>
<thead>
<tr>
<th>Source Side Water Limits</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Entering Water</td>
<td>20°F [-6.6°C]</td>
</tr>
<tr>
<td>Normal Entering Water</td>
<td>60°F [15.6°C]</td>
</tr>
<tr>
<td>Maximum Entering Water</td>
<td>90°F [32.2°C]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load Side Water Limits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Entering Water</td>
<td>60°F [15.6°C]</td>
</tr>
<tr>
<td>Normal Entering Water</td>
<td>100°F [37.8°C]</td>
</tr>
<tr>
<td>Maximum Entering Water</td>
<td>140°F [60.0°C]</td>
</tr>
</tbody>
</table>
UNIT & SYSTEM CHECKOUT

WARNING! Verify ALL water controls are open and allow water flow prior to engaging the compressor. Freezing of the coax or water lines can permanently damage the heat pump.

BEFORE POWERING SYSTEM, please check the following:

UNIT CHECKOUT
- **Balancing/Shutoff Valves**: Ensure all isolation valves are open, water control valves wired and open or coax may freeze and burst.
- **Line Voltage and Wiring**: Ensure Voltage is within an acceptable range for the unit and wiring and fuses/breakers are properly sized. Low voltage wiring is complete.
- **Unit Control Transformer**: Ensure transformer has properly selected control voltage tap. 208-230V units are factory wired for 230V operation unless specified otherwise.
- **Entering Water**: Ensure entering water temperatures are within operating limits of Table 7.
- **Low Water Temperature Cutout**: Verify low water temperature cut-out on CXM/DXM is properly set.
- **Water Flow Balancing**: Verify inlet and outlet water temperatures on both Load and source are recorded for each heat pump upon startup. This check can eliminate nuisance trip outs and high velocity water flows that can erode heat exchangers.
- **Unit Controls**: Verify CXM or DXM field selection options are proper and complete.

SYSTEM CHECKOUT
- **System Water Temperature**: Check load and source water temperature for proper range and also verify heating and cooling setpoints for proper operation.
- **System pH**: System water pH is 7.5 - 8.5. Proper pH promotes longevity of hoses and fittings.
- **System Flushing**: Water used in the system must be potable quality initially and clean of dirt, piping slag, and strong chemical cleaning agents. Verify all air is purged from the system. Air in the system can cause poor operation or system corrosion.
- **Cooling Tower/Boiler**: Check equipment for proper setpoints and operation.
- **Low Water Temperature Cutout**: Verify low water temperature cut-out controls are provided for the outdoor portion of the loop or operating problems will occur.
- **Miscellaneous**: Note any questionable aspects of the installation.

![Figure 15: Test Mode Pins](image)

WARNING! To avoid equipment damage, DO NOT leave system filled in a building without heat during the winter unless anti-freeze is added to system water. Condenser coils never fully drain by themselves and will freeze unless winterized with antifreeze.
UNIT START-UP PROCEDURE

1. Adjust all valves to their full open position. Turn on the line power to all heat pump units.
2. Operate each heat pump in the heating cycle. Verify heat exchanger flow rates based upon table 7 and temperature drop/rise based upon unit performance tables.
3. Establish a permanent operating record by logging the unit operating conditions at initial start-up for each unit.
4. If a unit fails to operate, conduct the following checks:
 a. Check the voltage and current. They should comply with the electrical specifications described on the unit nameplate.
 b. Look for wiring errors. Check for loose terminal screws where wire connections have been made on both the line and low-voltage terminal boards.
 c. Check the supply and return piping. They must be properly connected to the inlet and outlet connections on the unit.
 d. If the checks described above fail to reveal the problem and the unit still will not operate, contact a trained service technician to ensure proper diagnosis and repair of the equipment.

Note: Units have a five minute time delay in the control circuit that can be bypassed on the CXM PCB.

CXM/DXM Safety Control Reset
Lockout - In Lockout mode, the Status LED will begin fast flashing. The compressor relay is turned off immediately. Lockout mode can be soft reset via the “Y” input or can be hard reset via the disconnect. The last fault causing the lockout will be stored in memory and can be viewed by going into test mode.

Fault Retry - In Fault Retry mode, the Status LED begins slow flashing to signal that the control is trying to recover from a fault input. The CXM control will stage off the outputs and then “try again” to satisfy the thermostat "Y” input call. Once the input calls are satisfied, the control will continue on as if no fault occurred. If 3 consecutive faults occur without satisfying the "Y” input call, then the control will go to Lockout mode. The last fault causing the lockout will be stored in memory and can be viewed by going into test mode.

Consult the CXM/DXM AOM for complete descriptions.

Table 8: Heat Exchanger Water Pressure Drop

<table>
<thead>
<tr>
<th>Model</th>
<th>GPM [l/m]</th>
<th>Source/Outdoor Coax</th>
<th>Load/Indoor Coax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pressure Drop psi [kPa]</td>
<td>Pressure Drop psi [kPa]</td>
</tr>
<tr>
<td>010</td>
<td>6.6 [25.0]</td>
<td>0.60 [4.13]</td>
<td>0.48 [3.31]</td>
</tr>
<tr>
<td></td>
<td>8.3 [31.5]</td>
<td>0.85 [5.68]</td>
<td>0.73 [4.90]</td>
</tr>
</tbody>
</table>

Multiply psi by 2.31 to obtain feet of head
Multiply kPa by 10 to obtain mBar

WARNING!
WARNING! When the disconnect switch is closed, high voltage is present in some areas of the electrical panel. Exercise caution when working with energized equipment.

WARNING!
WARNING! Verify ALL water controls are open and allow water flow prior to engaging the compressor. Freezing of the coax or water lines can permanently damage the heat pump.
PREVENTIVE MAINTENANCE

Water Coil Maintenance –
(Direct Ground Water Applications Only)
If the installation is performed in an area with a known high mineral content (125 P.P.M. or greater) in the water, it is best to establish with the owner a periodic maintenance schedule so the coil can be checked regularly. Consult the well water applications section of this manual for a more detailed water coil material selection. Should periodic coil cleaning be necessary, use standard coil cleaning procedures which are compatible with either the heat exchanger material or copper water lines. Generally, the more water flowing through the unit the less chance for scaling.

Water Coil Maintenance –
(All Other Water Loop Applications)
Generally water coil maintenance is not needed however, if the installation is located in a system with a known high dirt or debris content, it is best to establish with the owner a periodic maintenance schedule so the coil can be checked regularly. These dirty installations are a result of the deterioration of iron or galvanized piping or components in the system or open cooling towers requiring heavy chemical treatment and mineral buildup through water use. Should periodic coil cleaning be necessary, use standard coil cleaning procedures which are compatible with both the heat exchanger material and copper water lines. Generally, the more water flowing through the unit, the less chance for scaling, however excessive flow rates can produce water (or debris) velocities that can erode the heat exchanger wall and ultimately produce leaks.

Compressor
Conduct annual amperage checks to ensure amp draw is no more than 10% greater than that indicated by serial plate data.

Cabinet
Do not allow water to stay in contact with the cabinet for long periods of time to prevent corrosion of the cabinet sheet metal. Generally equipment cabinets are set up from the floor a few inches for prevention. The cabinet can be cleaned using a mild detergent.

Refrigerant System
To maintain sealed circuit integrity, do not install service gauges unless unit operation appears abnormal. Reference the operating chart for pressure and temperatures. Verify that water flow rates are at proper levels before servicing the refrigerant circuit.
CARRIER CORPORATION
LIMITED EXPRESS WARRANTY/LIMITATION OF REMEDIES AND LIABILITY FOR RESIDENTIAL GEOTHERMAL PRODUCTS

It is expressly understood that unless a statement is specifically identified as a warranty, statements made by Carrier Corporation, a Delaware corporation, ("Carrier") or its representatives, relating to Carrier's products, whether oral, written or contained in any sales literature, catalog or agreement, are not express warranties and do not form part of the basis of the bargain, but are merely Carrier's opinion or commendation of Carrier's products.

EXCEPT AS SPECIFICALLY SET FORTH HEREIN, THERE IS NO EXPRESS WARRANTY AS TO ANY OF CARRIER'S PRODUCTS. CARRIER MAKES NO WARRANTY AGAINST LATENT DEFECTS. CARRIER MAKES NO WARRANTY OF MERCHANTABILITY OF THE GOODS OR OF THE FITNESS OF THE GOODS FOR ANY PARTICULAR PURPOSE.

LIMITED EXPRESS WARRANTY/LIMITATION OF REMEDIES AND LIABILITY FOR RESIDENTIAL GEOTHERMAL PRODUCTS

It is expressly understood that unless a statement is specifically identified as a warranty, statements made by Carrier Corporation, a Delaware corporation, ("Carrier") or its representatives, relating to Carrier's products, whether oral, written or contained in any sales literature, catalog or agreement, are not express warranties and do not form part of the basis of the bargain, but are merely Carrier's opinion or commendation of Carrier's products.

EXCEPT AS SPECIFICALLY SET FORTH HEREIN, THERE IS NO EXPRESS WARRANTY AS TO ANY OF CARRIER'S PRODUCTS. CARRIER MAKES NO WARRANTY AGAINST LATENT DEFECTS. CARRIER MAKES NO WARRANTY OF MERCHANTABILITY OF THE GOODS OR OF THE FITNESS OF THE GOODS FOR ANY PARTICULAR PURPOSE.

GRANT OF LIMITED EXPRESS WARRANTY
Carrier warrants its residential geothermal products, purchased and retained in the United States of America and Canada, to be free from defects in material and workmanship under normal use and maintenance as follows: (1) 50YD, 50YE, 90YD and 38WQS heat pump units built or sold by Carrier ("Carrier Geothermal Units") for five (5) years from the Warranty Inception Date (as defined below); (2) Auxiliary electric heaters and geothermal pumping modules built or sold by Carrier, when installed with Carrier Geothermal Units, for five (5) years from the Warranty Inception Date (as defined below); (3) Sealed refrigerant circuit components of Carrier Geothermal Units (which components only include the compressor, refrigerant to auxiliary heat exchanger, reversing valve body and refrigerant metering device) for ten (10) years from the Warranty Inception Date (as defined below). The "Warranty Inception Date" shall be the date of original unit installation, or six (6) months from date of unit shipment from Carrier, whichever comes first.

To make a claim under this warranty, parts must be returned to Carrier in Oklahoma City, Oklahoma, freight prepaid, no later than ninety (90) days after the date of the failure of the part; if Carrier determines the part to be defective and within Carrier's Limited Express Warranty, Carrier shall, when such part has been either replaced or repaired, return such to a factory recognized distributor, dealer or service organization, F.O.B. Carrier, Oklahoma City, Oklahoma, freight prepaid. The warranty on any part repaired or replaced under warranty expires at the end of the original warranty period.

This warranty does not cover and does not apply to (1) Air filters, fuses, refrigerant, fluids, or oil; (2) Products relocated after initial installation; (3) Any portion or component of any system that is not supplied by Carrier, regardless of the cause of the failure of such portion or component; (4) Products on which the unit identification tags or labels have been removed or defaced; (5) Products on which payment to Carrier, or to the owner's seller, is in default; (6) Products subjected to improper or inadequate installation, maintenance, repair, wiring or voltage conditions; (7) Products subjected to accident, misuse, negligence, abuse, fire, flood, lightening, unauthorized alteration, misapplication, contaminated or corrosive air or liquid supply, operation at abnormal air or liquid temperature or flow rates, or opening of the refrigerant circuit by unqualified personnel; (8) Mold, fungus or bacteria damages; (9) Corrosion or abrasion of the product; (10) Products supplied by others; (11) Products which have been operated in a manner contrary to Carrier's printed instructions; (12) Products which have insufficient performance as a result of improper system design or improper application, installation, or use of Carrier's products; or (13) Electricity or fuel costs, or any increases or unrealized savings in same, for any reason whatsoever.

Carrier is not responsible for: (1) The costs of any fluids, refrigerant or system components supplied by others, or associated labor to repair or replace the same, which is incurred as a result of a defective part covered by Carrier's Limited Express Warranty; (2) The costs of labor, refrigerant, materials or service incurred in diagnosis and removal of the defective part, or in obtaining and replacing the new or repaired part; (3) Transportation costs of the defective part from the installation site to Carrier, or of the return of that part if not covered by Carrier's Limited Express Warranty; or (4) The costs of normal maintenance.

This Limited Express Warranty applies to Carrier Residential Geothermal products manufactured on or after June 9, 2003 (Carrier Geothermal Units with serial numbers beginning with 2403 or later), and is not retroactive to any products produced prior to June 9, 2003 (Carrier Geothermal Units with serial numbers beginning with 2003 and earlier).

LIMITATION: This Limited Express Warranty is given in lieu of all other warranties. If, notwithstanding the disclaimers contained herein, it is determined that other warranties exist, any such express warranty, including without limitation any express warranties or any implied warranties of fitness for particular purpose and merchantability, shall be limited to the duration of the Limited Express Warranty.

LIMITATION OF REMEDIES
In the event of a breach of the Limited Express Warranty, Carrier will only be obligated at Carrier's option to repair the failed part or unit, or to furnish a new or rebuilt part or unit in exchange for the part or unit which has failed. If after written notice to Carrier's factory in Oklahoma City, Oklahoma of each defect, malfunction or other failure, and a reasonable number of attempts by Carrier to correct the defect, malfunction or other failure, and the remedy fails of its essential purpose, Carrier shall refund the purchase price paid to Carrier in exchange for the return of the sold goods. Said refund shall be the maximum liability of Carrier. THIS REMEDY IS THE SOLE AND EXCLUSIVE REMEDY OF THE BUYER OR PURCHASER AGAINST CARRIER FOR BREACH OF CONTRACT, FOR THE BREACH OF ANY WARRANTY OR FOR CARRIER'S NEGLIGENCE OR IN STRICT LIABILITY.

LIMITATION OF LIABILITY
Carrier shall have no liability for any damages of Carrier's performance isolated for any reason or is preceded to any extent by any event such as, but not limited to: any war, civil unrest, government restrictions or restraints, strikes, or work stoppages, fire, flood, accident, shortages of transportation, fuel, material, or labor, acts of God or any other reason beyond the sole control of Carrier. CARRIER EXPRESSLY DISCLAIMS AND EXCLUDES ANY LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGE IN CONTRACT, FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY, OR IN TORT, WHETHER FOR CARRIER'S NEGLIGENCE OR AS STRICT LIABILITY.

OBTAINING WARRANTY PERFORMANCE
Normally, the dealer or service organization who installed the products will provide warranty performance for the owner. Should the installer be unavailable, contact any Carrier recognized distributor, dealer or service organization. If assistance is required in obtaining warranty performance, write or call:
Carrier Corporation. • Customer Service • 7300 SW 44th Street • Oklahoma City, Oklahoma 73179 • (405) 745-2929

NOTE: Some states or Canadian provinces do not allow limitations on how long an implied warranty lasts, or the limitation or exclusions of consequential or incidental damages, so the foregoing exclusions and limitations may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and from Canadian province to Canadian province.

Please refer to the Carrier Installation, Operation and Maintenance Manual for operating and maintenance instructions.
The manufacturer works continually to improve its products. As a result, the design and specifications of each product at the time for order may be changed without notice and may not be as described herein. Please contact the Manufacturer’s Customer Service Department at 1-405-745-2920 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely the manufacturer’s opinion or commendation of its products.

The management system governing the manufacture of these products is ISO 9001:2000 certified.

© LSB Industries, Inc. 2007

Rev.: 31 Jan, 2008D